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Abstract

This paper presents a bootstrapped p-value white noise test based on the maximum correlation,
for a time series that may be weakly dependent under the null hypothesis. The time series may be
prefiltered residuals. The test statistic is a normalized weighted maximum sample correlation coefficient
max1≤h≤Ln

√
n|ω̂n(h)ρ̂n(h)|, where ω̂n(h) are weights and the maximum lag Ln increases at a rate slower

than the sample size n. We only require uncorrelatedness under the null hypothesis, along with a moment
contraction dependence property that includes mixing and non-mixing sequences. We show Shao’s (2011)
dependent wild bootstrap is valid for a much larger class of processes than originally considered. It is
also valid for residuals from a general class of parametric models as long as the bootstrap is applied to a
first order expansion of the sample correlation. We prove the bootstrap as asymptotically valid without
exploiting extreme value theory (standard in the literature) or recent Gaussian approximation theory.
Finally, we extend Escanciano and Lobato’s (2009) automatic maximum lag selection to our setting with
an unbounded lag set that ensures a consistent white noise test, and find it works extremely well in
controlled experiments.
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1 Introduction

We present a bootstrap white noise test based on the maximum (in absolute value) autocorrelation.

The data may be observed, or filtered residuals. A new asymptotic theory approach is used relative to

the literature, one that sidesteps deriving the asymptotic distribution of a max-correlation statistic, or

working with tools specific to Gaussian approximations and couplings. We operate solely on the boot-

strapped p-value. We combine convergence in finite dimensional distributions of the sample correlation

with new theory for handling convergence of arbitrary arrays. The latter is applicable for dealing with

the maximum of an increasing sequence of correlations.

The class of time series models considered here is:

yt = f(xt−1, ϕ0) + ut and ut = ϵtσt(θ0) (1)

where ϕ ∈ Rkϕ , kϕ ≥ 0, and f(x, ϕ) is a level response function. The error ϵt satisfies E[ϵt] = 0, E[ϵ2t ] <

∞, and the regressors are xt ∈ Rkx , kx ≥ 0. We assume {xt, yt} are strictly stationary in order to focus

ideas. Volatility σ2t (θ0) is a process measurable with respect to Ft−1 ≡ σ(yτ , xτ : τ ≤ t − 1), where θ0 is

decomposed as [ϕ′0, δ
′
0] ∈ Rkθ and δ0 ∈ Rkδ are volatility-specific parameters, (kθ, kδ) ≥ 0. The dimensions

of ϕ0 and δ0 (hence θ0) may be zero, depending on the model desired and the interpretation of the test

variable ϵt. Thus, kϕ = 0 implies a volatility model yt = ϵtσt(θ0), if kδ = 0 then yt = f(xt−1, ϕ0) + ϵt,

and yt = ϵt when kθ = 0 (i.e. a filter is not used). We want to test if {ϵt} is a white noise process:

H0 : E [ϵtϵt−h] = 0 ∀h ∈ N against H1 : E [ϵtϵt−h] ̸= 0 for some h ∈ N.

Notice ϵt need not have a zero conditional mean: we do not require, e.g., E[ϵt|xt−1] = 0 a.s. This

implies that we do not require σ2t (θ0) to be a conditional variance. Together, (1) allows for model mis-

speicification. Nevertheless, (1) is assumed correct in some sense, whether H0 is true or not, in view

of E[ϵt] = 0. Thus, θ0 should be thought of as a pseudo-true value that can be identified, often by

unconditoinal moment conditions (Kullback and Leibler, 1951, Sawa, 1978).

Unless yt = ϵt such that yt is known to have a zero mean, let θ̂n = [ϕ̂′n, δ̂
′
n] estimate θ0 where n is the

sample size, and define the residual, and its sample serial covariance and correlation at lag h ≥ 1:

ϵt(θ̂n) ≡
ut(ϕ̂n)

σt(θ̂n)
≡ yt − f(xt−1, ϕ̂n)

σt(θ̂n)
and γ̂n(h) ≡

1

n

n∑
t=1+h

ϵt(θ̂n)ϵt−h(θ̂n) and ρ̂n(h) ≡
γ̂n(h)

γ̂n(0)
.

In the pure volatility model set f(xt−1, ϕ̂n) = 0, and in the level model set σt(θ̂n) = 1.

Our primary test statistic is the normalized weighted sample maximum correlation,

T̂n ≡
√
n max

1≤h≤Ln

|ω̂n(h)ρ̂n(h)| ,

where ω̂n(h) > 0 are possibly stochastic weights with ω̂n(h)
p→ ω(h) > 0. The weights allow for (i)
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control for variable dispersion across lags that affect empirical power, or (ii) a decrease in accuracy

in probability when n is small and h is large. In the former case ω̂n(h) may be an inverted standard

deviation estimator. In the latter case we might use ω̂n(h) = (n − 2)/(n − h) as in Ljung and Box

(1978). Despite the generality afforded by weights, we find using ω̂n(h) = 1 results in accurate sharp

size and comparably high power in Monte Carlo simulations.

The number of lags Ln can converge to a finite positive integer; the theory follows trivially from the

proofs of our main results. In that case our test would not be a formal test of the white noise hypothesis.

We want Ln → ∞ as n → ∞ in order to ensure a white noise test, and that Ln = o(n) to ensure γ̂n(h)

= E[ϵtϵt−h] + Op(1/
√
n) for each h ∈ {1, ...,Ln}. The limit theory in that case requires more than

convergence in finite dimensional distributions based on classic arguments (Hoffmann-Jørgensen, 1984,

1991, e.g.), which is one of the major challenges we address in this paper.

Interest in the maximum of an increasing sequence of deviated covariances
√
n max1≤h≤Ln |γ̂n(h) −

γ(h)| dates in some form to Berman (1964) and Hannan (1974). See also Xiao and Wu (2014) and their

references. In this literature the test variable is observed, and the exact asymptotic distribution form of

a suitably normalized
√
nmax1≤h≤Ln |γ̂n(h) − γ(h)| is sought. Xiao and Wu (2014) impose a moment

contraction property on yt, and Ln = O(nυ) for some υ ∈ (0, 1) that is smaller with greater allowed depen-

dence. They show an{
√
nmax1≤h≤Ln |γ̂n(h) − γ(h)|/(

∑∞
h=0 γ(h)

2)1/2 − bn}
d→ exp{− exp{−x}}, a Gum-

bel distribution, with normalizing sequences an, bn ∼ (2 ln(n))1/2. See, also, Jirak (2011). Xiao and Wu

(2014) do not prove their blocks-of-blocks bootstrap is valid under their assumptions, and only observed

data are allowed. The moment contraction property is also more restrictive than the Near Epoch De-

pendence [NED] property used here (see the supplemental material Hill and Motegi, 2018, Appendix

B).

Chernozhukov, Chetverikov, and Kato (2013, 2015, 2017) significantly improve on results in the lit-

erature on Gaussian approximations and couplings, cf. Yurinskii (1977), Dudley and Philipp (1983),

Portnoy (1986), and Le Cam (1988). They allow for arbitrary dependence across the sequence of sample

means, and the sequence length may grow at a rate of order eKnς
for some K, ς > 0. Sample auto-

correlations, however, only exist for lags {0, ..., n − 1}, and are Fisher consistent for the population

autocorrelations for lags h up to order o(n). The independence assumption, however, is not feasible

for a white noise test since ϵtϵt−h is at best a martingale difference, and may be generally depen-

dent under either hypothesis. Further, a Gaussian approximation theory cannot handle the maximum

distance between ρ̂n(h) based on residuals ϵt(θ̂n)ϵt−h(θ̂n), and its version based on ϵtϵt−h (and other

components due to the plug-in estimator θ̂n) because ϵtϵt−h is typically not Gaussian even if ϵt is.1

Chernozhukov, Chetverikov, and Kato (2014, Section 7) allow for β-mixing data, but the above problem

1When filtered data are used we must prove in Lemma 2.1 that max1≤h≤Ln |1/
√
n
∑n

t=1 ϵt(θ̂n)ϵt−h(θ̂n) −
1/

√
n
∑n

t=1 zt(h)|
p→ 0 for some sequence {Ln}, Ln → ∞, and some process {zt(h)} that is a function of ϵtϵt−h

and components of θ̂n. We then prove in Lemma 2.2 that max1≤h≤Ln |1/
√
n
∑n

t=1 zt(h) − Z(h)| p→ 0 for some
Gaussian process {Z(h)}. The Gaussian approximation theory of Chernozhukov, Chetverikov, and Kato (2013, 2017)

can handle max1≤h≤Ln |1/
√
n
∑n

t=1 zt(h) − Z(h)| p→ 0 since {Z(h)} is Gaussian. But their theory cannot determine

max1≤h≤Ln |1/
√
n
∑n

t=1 ϵt(θ̂n)ϵt−h(θ̂n) − 1/
√
n
∑n

t=1 zt(h)|
p→ 0 because that would require 1/

√
n
∑n

t=1 zt(h) itself to be
Gaussian for each n. The latter generally does not hold because ϵtϵt−h is not Gaussian even if ϵt is.
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involving filtered data is not resolved, and our NED environment eclipses a mixing environment (see

Section 2.1, below, and see, e.g., Davidson, 1994, Chapter 17).

Compared to the above literature, we use a different asymptotic theory approach. We sidestep

extreme value theoretic methods by exploiting convergence of {
√
n(γ̂n(h) − γ(h)) : 1 ≤ h ≤ L} to a

Gaussian process, for each finite L ∈ N. Because that is not sufficient for weak convergence in the

classic sense of Hoffmann-Jørgensen (1984, 1991), we develop new theory for double array convergence,

which is associated with arguments dating to Ramsey (1930). This allows us to prove that under H0

the maximum distance over 1 ≤ h ≤ Ln between
√
nρ̂n(h) and its bootstrapped version converges to

zero for some sequence of positive integers {Ln}, with Ln → ∞ and Ln = o(n), without using extreme

value theoretic arguments or Gaussian approximation theory. This is our primary contribution. As in

Chernozhukov, Chetverikov, and Kato (2013), we do not require
√
nmax1≤h≤Ln |ω̂n(h)ρ̂n(h)| to converge

in law under H0 since the bootstrap is asymptotically valid irrespective of the asymptotic properties of
√
nmax1≤h≤Ln |ω̂n(h)ρ̂n(h)|.2

Our asymptotic theory covers a class of continuous transforms of [
√
nω̂n(h)ρ̂n(h)]

Ln
h=1. This includes

the maximum, but also a weighted average n
∑Ln

h=1 ω̂
2
n(h)ρ̂

2
n(h), and therefore portmanteau statistics

(cf. Ljung and Box, 1978, Hong, 1996, 2001). Hong (1996, 2001) presents spectral density methods

for testing for uncorrelatedness, and the proposed test statistic is simply a normalized portmanteau.

The latter is shown to be asymptotically normal under regularity conditions that ensure
√
nρ̂2n(h) is

asymptotically independent across h under H0. Our theory alleviates the necessity for the normalized

n
∑Ln

h=1 ω̂
2
n(h)ρ̂

2
n(h) to converge in law under H0, hence we do not require asymptotic independence.

We perform a bootstrap p-value test using Shao’s (2011) dependent wild bootstrap, and prove its

validity. In order to control for the use of filtered sampling errors, the bootstrap is applied to a first

order expansion of the sample covariance. Delgado and Velasco (2011) take a different approach by

using orthogonally transformed jointly standardized correlations in order to control for residuals and

dependence. They assume a fixed maximum lag L, however, due to joint standardization.

Finally, in order to resolve the choice of {Ln}, we extend Escanciano and Lobato’s (2009) automatic

maximum lag selection method to our setting. Escanciano and Lobato (2009) develop a Q-test with

bounded maximum lag that is selected based on the magnitude of the maximum correlation. We allow

for selection from an increasing set of integers, and provide an asymptotic theory for the new automatic

maximum lag.

General dependence under the null is allowed in different ways in Hong (1996), Romano and Thombs

(1996), Shao (2011), and Guay, Guerre, and Lazarová (2013), amongst others. Our NED setting is

similar to that of Lobato (2001) and Nankervis and Savin (2010, 2012), but the former works with

observed data and requires a fixed maximum lag, and we allow for a substantially larger class of filters

and parametric estimators than the latter. NED encompasses mixing and non-mixing processes, hence

our setting is more general than Zhu’s (2015) for his block-wise random weighting bootstrap.

2We cannot provide an upper bound on Ln → ∞ similar to the one in Xiao and Wu (2014). This is an unavoidable cost
for our (i) having a broad class of dependence under the null; (ii) using residuals and therefore requiring convergence of
maxima that are not approximated by a Gaussian process; and (iii) sidestepping extreme value theory arguments.

4



Shao (2011), Guay, Guerre, and Lazarová (2013) and Xiao and Wu (2014) use a moment contraction

property from Wu (2005) and Wu and Min (2005) with (potentially far) greater moment conditions than

imposed here (e.g Shao, 2011, Guay, Guerre, and Lazarová, 2013). Shao (2011) requires a complicated

eighth order cumulant condition that is only known to hold under geometric memory, and residuals are

not treated. Xiao and Wu (2014) only require slightly more than a 4th moment, as we do, but do not

allow for residuals. We show in the supplemental material Hill and Motegi (2018, Appendix B) that

our NED setting is more general than the moment contraction properties employed in Shao (2011) and

Guay, Guerre, and Lazarová (2013), and allows for slower memory decay than Xiao and Wu (2014).

Test statistics that combine serial correlations have a vast history dating to Box and Pierce’s (1970)

Q-test. Many generalizations exist, including letting the maximum lag increase (Hong, 1996, 2001);

bootstrapping or re-scaling for size correction under weak dependence (Romano and Thombs, 1996,

Lobato, 2001, Horowitz, Lobato, Nankervis, and Savin, 2006, Kuan and Lee, 2006, Zhu, 2015); using a

Lagrange Multiplier type statistic to account for weak dependence (e.g. Andrews and Ploberger, 1996,

Lobato, Nankervis, and Savin, 2002); exploiting an expansion and orthogonal projection to produce piv-

otal statistics (Lobato, 2001, Kuan and Lee, 2006, Delgado and Velasco, 2011); and using endogenous

maximum lag selection (Escanciano and Lobato, 2009, Guay, Guerre, and Lazarová, 2013).

A related class of estimators exploits the periodogram, an increasing sum of sample correlations,

dating to Grenander and Rosenblatt (1952) (e.g. Hong, 1996, Deo, 2000, Delgado, Hidalgo, and Velasco,

2005, Shao, 2011, Zhu and Li, 2015). Hong (1996) standardizes a periodogram resulting in less-than
√
n-local power, while Cramér-von Mises and Kolmogorov-Smirnov transforms in Deo (2000), Delgado,

Hidalgo, and Velasco (2005), and Shao (2011) result in
√
n-local power. Guay, Guerre, and Lazarová

(2013) show that Hong’s (1996) standardized portmanteau test (but not a Cramér-von Mises test) can

detect local-to-null correlation values at a rate faster than
√
n provided an adaptive increasing maximum

lag is used. Finally, a weighted sum of correlations also arises in Andrews and Ploberger’s (1996) sup-LM

test (cf. Nankervis and Savin, 2010).

A simulation study shows that our proposed max-correlation test with Shao’s (2011) dependent wild

bootstrap and automatic lag (denoed T̂ dw(L∗n)) dominates a variety of other tests. In this paper, we

compare T̂ dw(L∗n) and Shao’s (2011) dependent wild bootstrap spectral Cramér-von Mises test, which

is proposed for observed data. In the supplemental material Hill and Motegi (2018, Appendix G), we

consider other tests, including Hong’s (1996) test based on a standardized periodogram, a CvM test

with Zhu and Li’s (2015) block-wise random weighting bootstrap, and Andrews and Ploberger’s (1996)

sup-LM test with the dependent wild bootstrap. Overall the CvM test is one of the strongest competitors

of our test. First, generally T̂ dw(L∗n) achieves sharp size. Second, T̂ dw(L∗n), the sup-LM, and the CvM

tests lead to roughly comparable power when there exist autocorrelations at small lags. Third, T̂ dw(L∗n)
has high power while others have almost no power when there exist autocorrelations at remote lags.

Thus, of the tests under study, T̂ dw(L∗n) is the only white noise test that accomplishes both sharp size

in general and high power. The sharp performance of T̂ dw(L∗n) stems from the fact that the automatic

lag selection mechanism trims redundant lags under H0, and hones in on the most informative lag under
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H1.

The remainder of the paper is as follows. Section 2 contains the assumptions and main results,

automatic lag selection is developed in Section 3, and a Monte Carlo study follows in Section 4. Con-

cluding remarks are left for Section 5. Proofs are gathered in Appendix A and the supplemental material

Hill and Motegi (2018, Appendix F), and all figures and tables are placed at the end.

Throughout | · | is the l1-matrix norm; || · || is the l2-matrix norm; || · ||p is the Lp-norm. I(·) is the
indicator function: I(A) = 1 if A is true, else I(A) = 0. Ft ≡ σ(yτ , xτ : τ ≤ t). All random variables

lie in a complete probability measure space (Ω,P,F), hence σ(∪t∈ZFt) ⊆ F . We drop the (pseudo) true

value θ0 from function arguments when there is no confusion.

2 Max-Correlation Test

We first lay out the assumptions and derive some fundamental properties of the correlation maximum.

We then derive the main results.

2.1 Assumptions and Asymptotic Expansion

An expansion of ϵt(θ̂n) around θ0 is required in order to ensure the bootstrapped statistic captures the

influence of the estimator θ̂n on
√
nρ̂n(h). This is accomplished under various regularity assumptions.

Let {υt} be a stationary α-mixing process with σ-fields Vt
s ≡ σ(υτ : s ≤ τ ≤ t) and Vt ≡ Vt

−∞, and

coefficients α
(υ)
m = supA⊂V∞

t ,B⊂Vt−m
−∞
|P (A ∩ B) − P (A)P (B) | → 0 as m → ∞. We say Lq-bounded

{ϵt} is stationary Lq-NED with size λ > 0 on a mixing base {υt} when ||ϵt − E[ϵt|Vt+m
t−m]||q = O

(
m−λ−ι

)
for tiny ι > 0.3 If ϵt = υt then ||ϵt − E[ϵt|Vt+m

t−m]||q = 0, hence NED includes mixing sequences, but it

also includes non-mixing sequences since it covers infinite lag functions of mixing sequences that need

not be mixing. NED is related to McLeish’s (1975) mixingale property. See Davidson (1994, Chapter

17) for historical references and deep results.

Assumption 1 (data generating process).

a. {xt, yt} are stationary, ergodic, and L2+δ-bounded for tiny δ > 0.

b. ϵt is stationary, ergodic, E[ϵt] = 0, Lr-bounded, r > 4, and L4-NED with size 1/2 on stationary

α-mixing {υt} with coefficients α
(υ)
h = O(h−r/(r−4)−ι) for tiny ι > 0.

c. The weights satisfy ω̂n(h) > 0 a.s. and ω̂n(h)
p→ ω(h) for non-random ω(h) ∈ (0,∞), for each h.

Remark 1. Ergodicity is not required in principle, but imposed to allow easily for laws of large num-

bers on functions of f(xt, ϕ) and σ2t (θ) and their derivatives. Indeed, NED does not necessarily carry

over to arbitrary measurable transforms of an NED process. α-mixing, for example, implies ergodicity,

it extends to measurable transforms, and is a sub-class of NED. Lobato, Nankervis, and Savin (2002)

3This definition of size is slightly different from the conventional one, e.g. Davidson (1994, p. 262). We use de Jong’s
(1997: Definition 1) definition because we use his central limit theorem for NED arrays.
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impose a similar NED property. Nankervis and Savin (2010), who generalize the white noise test of

Andrews and Ploberger (1996), allow for NED observed yt, but mistakenly assume yt is only L2-NED.4

If yt = ϵt is known then a filter is not required, and Assumption 1 suffices for our main results. In

this case, if yt is iid under H0, then it only needs to be L2-bounded.

The next assumption is required if a filter is used. Let 0l be an l-dimensional zero vector. Define

Gt(ϕ) ≡
[
∂

∂ϕ′
f(xt−1, ϕ),0

′
kδ

]′
∈ Rkθ and st(θ) ≡

1

2

∂

∂θ
lnσ2t (θ) (2)

D(h) ≡ E
[(
ϵtst +

Gt

σt

)
ϵt−h

]
+ E

[
ϵt

(
ϵt−hst−h +

Gt−h

σt−h

)]
∈ Rkθ .

We do not require a filter for the above entities to make sense. If yt = ϵt, for example, then Gt(ϕ), st(θ)

and therefore D(h) are each just zero.

We require notation that makes use of estimating equations mt ∈ Rkm and a matrix A ∈ Rkθ×km

defined under Assumption 2.c. Define

rt(h) ≡
ϵtϵt−h − E [ϵtϵt−h]−D(h)′Amt

E
[
ϵ2t
] and ρ(h) ≡ E[ϵtϵt−h]

E[ϵ2t ]
(3)

zt(h) ≡ rt(h)− ρ(h)rt(0) =
ϵtϵt−h − ρ(h)ϵ2t − (1− ρ(h))D(h)′Amt

E
[
ϵ2t
] .

The process that arises in the key approximation is:

Zn(h) ≡
1√
n

n∑
t=1+h

zt(h). (4)

Assumption 2 (plug-in: response and identification).

a. Level response. f : Rkx × Φ → R, where Φ is a compact subset of Rkϕ, kϕ ≥ 0; f(x, ϕ) is Borel

measurable for each ϕ, and for each x three times continuously differentiable, where (∂/∂ϕ)jf(x, ϕ) is

Borel measurable for each ϕ and j = 1, 2, 3; E[supϕ∈Nϕ0
|(∂/∂ϕ)jf(xt, ϕ)|4] < ∞ for j = 0, 1, 2, 3 and

some compact set with positive measure Nϕ0 ⊆ Φ containing ϕ0.

b. Volatility. σ2t : Θ→ [0,∞) where Θ = Φ × ∆ ∈ Rkθ , and ∆ is a compact subset of Rkδ , kδ ≥ 0; σ2t (θ) is

Ft−1-measurable, continuous, and three times continuously differentiable, where (∂/∂θ)j lnσ2t (θ) is Borel

measurable for each θ and j = 1, 2, 3; infθ∈Θ |σ2t (θ)| ≥ ι > 0 a.s. and E[supθ∈Nθ0
|(∂/∂θ)j lnσ2t (θ)|4] <

∞ for j = 0, 1, 2, 3 and some compact subset Nθ0 ⊆ Θ containing θ0.

c. Estimator. θ̂n ∈ Θ for each n, and for a unique interior point θ0 ∈ Θ we have
√
n(θ̂n − θ0) =

An−1/2
∑n

t=1mt(θ0) + op(1), with Ft-measurable estimating equations mt = [mi,t]
km
i=1 : Θ → Rkm for km

4A Gaussian central limit theorem requires the product, in our case ϵtϵt−h, to be L2-NED, which holds when ϵt is
Lp-bounded, p > 4, and L4-NED (Davidson, 1994, Theorem 17.9).
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≥ kθ; and non-stochastic A ∈ Rkθ×km. Moreover, zero mean mt(θ0) is stationary, ergodic, Lr/2-bounded

and L2-NED with size 1/2 on {υt}, where r > 4 and {υt} appear in Assumption 1.b.

d. Finite Dimensional Variance. Let L ∈ N be arbitrary, and let λ ≡ [λh]
L
h=1 ∈ RL. Then

lim infn→∞ infλ′λ=1E[(
∑L

h=1 λhZn(h))
2] > 0.

Remark 2. Smoothness (a) and (b) ensure a stochastic equicontinuity property for uniform laws of large

numbers. Non-differentiability can be allowed provided certain other smoothness conditions involving,

e.g., bracketing numbers apply (see, e.g. Pakes and Pollard, 1989, Arcones and Yu, 1994).

Remark 3. E[supϕ∈Nϕ0
|(∂/∂ϕ)jf(xt, ϕ)|4] < ∞ and E[supθ∈Nθ0

|(∂/∂θ)j lnσ2t (θ)|4] < ∞ are used to

prove a required uniform law of large numbers, where the former can imply higher moment bounds than in

Assumption 1 depending on the response f . Fourth moments are required due to a required residual cross-

product expansion. E[supθ∈Nθ0
|(∂/∂θ)j lnσ2t (θ)|4] < ∞ holds for many linear and nonlinear volatility

models, e.g. GARCH, Quadratic GARCH, GJR-GARCH (Francq and Zaköıan, 2004, 2010).

Remark 4. θ̂n under (c) is asymptotically a linear function of some zero mean Ft-measurable process

mt(θ0). This includes M-estimators, GMM and (Generalized) Empirical Likelihood with smooth or

nonsmooth estimating equations, and estimators with non-smooth criteria and asymptotic expansions like

LAD and quantile regression. Typically mt(θ0) is a function of ut or ϵt and the gradients (∂/∂ϕ)f(xt, ϕ0)

and/or (∂/∂θ)σ2t (θ0), in which case E[mt] = 0 represents an orthogonality condition that identifies θ0,

even if ϵt is not white noise. The assumption that mt is NED in (c), in conjunction with Assumption 1,

implies linear combinations of ϵtϵt−h and mt are NED (Davidson, 1994, Theorem 17.8), which promotes

Gaussian finite dimensional asymptotics for the residuals cross-product.

Remark 5. (d) is a standard nondegeneracy assumption for finite dimensional asymptotics.

The theory developed in this paper extends to a class of functions of [
√
nρ̂n(h)]

Ln
h=1. Specifically:

ϑ : RL → [0,∞) for arbitrary L ∈ N, (5)

which satisfies the following: lower bound ϑ(a) = 0 if and only if a = 0; upper bound ϑ(a) ≤ KLM
for some K > 0 and any a = [ah]

L
h=1 such that |ah| ≤ M for each h; divergence ϑ(a) → ∞ as ||a|| →

∞; monotonicity ϑ(aL1) ≤ ϑ([a′L1
, c′L2−L1

]′) where (aL, cL) ∈ RL, ∀L2 ≥ L1 and any cL2−L1 ∈ RL2−L1 ;

and the triangle inequality ϑ(a + b) ≤ ϑ(a) + ϑ(b) ∀a, b ∈ RLn . Examples include the maximum ϑ(a)

= max1≤h≤L |ah| and sum ϑ(a) =
∑L

h=1 |ah|, where a = [ah]
L
h=1. The lower bound ϑ(a) = 0 if and only

if a = 0 ensures we omit cases where test power is not asymptotically one. As one example, for the

sum ϑ̃(a) =
∑L

h=1 ah, ϑ̃([
√
nω̂n(h)ρ̂n(h)]

Ln
h=1) need not diverge under the alternative because ϑ̃(a) = 0 is

possible for a ̸= 0.

We do not show that ϑ depends on L to reduce notation. The general test statistic is therefore:

T̂n ≡ ϑ
([√

nω̂n(h)ρ̂n(h)
]Ln

h=1

)
.
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Both max1≤h≤Ln |
√
nω̂n(h)ρ̂n(h)| and a weighted portmanteau n

∑Ln
h=1 ω̂

2
n(h)ρ̂

2
n(h) are covered. We can

use the normalization Nn ≡ (2Ln)−1/2
∑Ln

h=1 ω̂n(h){nρ̂2n(h) − 1} used in Hong (1996, 2001), but boot-

strapping the latter is arithmetically equivalent to bootstrapping n
∑Ln

h=1 ω̂
2
n(h)ρ̂

2
n(h), and contrary to

Hong (1996, 2001) we do not require Nn to converge to a standard normal law under the null.

The following result establishes a key approximation theory for an increasing sequence of serial

correlations. See Appendix A for all proofs.

Lemma 2.1. Let Assumptions 1 and 2 hold. For some non-unique sequence {Ln} of positive integers,

where Ln → ∞ and Ln = o(n), we have: |ϑ(
√
n[ω̂n(h){ρ̂n(h) − ρ(h)}]Ln

h=1) − ϑ([ω(h)Zn(h)]
Ln
h=1)| ≤

ϑ([
√
nω̂n(h){ρ̂n(h) − ρ(h)} − ω(h)Zn(h)]

Ln
h=1)

p→ 0. Therefore, under the null hypothesis:∣∣∣∣∣∣ϑ
(√

nω̂n(h)ρ̂n(h)
Ln
h=1

)
− ϑ

[ω(h) 1√
n

n∑
t=1+h

{
ϵtϵt−h −D(h)′Amt

E
[
ϵ2t
] }]Ln

h=1

∣∣∣∣∣∣ p→ 0.

Remark 6. The sequence {Ln} is not unique because for any other {L̊n}, L̊n→∞ and lim supn→∞{L̊n/Ln}
< 1, monotonicity ϑ(ak) ≤ ϑ([a′k, c

′
l−k]

′) ∀ak ∈ Rk and ∀cl−k ∈ Rl−k implies as n → ∞:

ϑ

([√
nω̂n(h){ρ̂n(h)− ρ(h)} − ω(h)Zn(h)

]L̊n

h=1

)
(6)

≤ ϑ
([√

nω̂n(h){ρ̂n(h)− ρ(h)} − ω(h)Zn(h)
]Ln

h=1

)
p→ 0,

hence |ϑ(
√
n[ω̂n(h){ρ̂n(h) − ρ(h)}]L̊n

h=1) − ϑ([ω(h)Zn(h)]
L̊n
h=1)|

p→ 0. Indeed, by an identical argument

trivially (6) applies for any positive integer sequence {L̊n} that satisfies lim supn→∞{L̊n/Ln} < 1, cov-

ering the case L̊n → (0,∞). All subsequent results therefore extend to this general case. We do not

highlight it because it does not promote a consistent test.

Remark 7. In our general environment we cannot obtain an upper bound on the maximum lag increase

Ln → ∞. We can only say that the approximation holds over all 1 ≤ h ≤ Ln for some {Ln}, Ln = o(n)

and Ln → ∞. This arises entirely from our allowing for a filter: Gaussian approximations and extreme

value theoretic approaches are not suitable in this general case. In Section 3 we propose a data-dependent

automatic lag selection that helps resolve the arbitrariness of lag choice in practice. The theory there,

however, requires an upper bound on how fast any feasible Ln diverges. In Section 4 we show that the

automatic lag works very well in practice.

The proof of Lemma 2.1 relies on a two-fold argument. First we prove AL,n ≡ ϑ([
√
nω̂n(h){ρ̂n(h) −

ρ(h)} − ω(h)Zn(h)]
L
h=1)

p→ 0 for each L ∈ N. Using standard weak convergence theory, this does not

suffice to show ALn,n
p→ 0 for some Ln → ∞. This follows because weak convergence in the broad sense

of Hoffmann-Jørgensen (1984, 1991) to a Gaussian limit, with a version that has uniformly bounded and

uniformly continuous sample paths, is equivelant to pointwise convergence and the existence of a pseudo

metric d on N such that (N, d) is a totally bounded pseudo metric space and a stochastic equicontinuity
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property based on d holds. If d is the Euclidean distance, for example, then (N, d) is not totally bounded

because N is not compact. See also Dudley (1978, 1984) and Pollard (1990, Chapters 9-10). We take an

approach different from Hoffman-Jorgensen’s (1984) notion of weak dependence, based on new theory

developed below. We prove that AL,n
p→ 0 for each L ∈ N directly implies ALn,n

p→ 0 for some sequence

of positive integers {Ln} that satisfies Ln → ∞ and Ln = o(n). See Lemmas A.1 and A.2 in Appendix

A. Thus, by sidestepping the Hoffmann-Jørgensen (1984, 1991) view of weak dependence, which requires

more than convergence in finite dimensional distributions, we are able to show that such convergence

suffices. Our approach has deep roots in Ramsey (1930) theory, based on its implications for monotone

subsequences (e.g. Boehme and Rosenfeld, 1974, Thomason, 1988, Myers, 2002) as applied to Frechét

spaces (Boehme and Rosenfeld, 1974).

The same array argument, coupled with extant central limit theory for NED arrays, yields the

following fundamental Gaussian approximation result for the Lemma 2.1 approximation process {Zn(h)

: 1 ≤ h ≤ Ln}. Recall Zn(h) ≡ 1/
√
n
∑n

t=1+h zt(h) where zt(h) ≡ rt(h) − ρ(h)rt(0) and rt(h) ≡ {ϵtϵt−h

− E[ϵtϵt−h] − D(h)′Amt}/E[ϵ2t ].

Lemma 2.2. Let Assumptions 1.a,b and 2.c,d hold. Let {Z(h) : h ∈ N} be a zero mean Gaussian process

with variance limn→∞ n−1
∑n

s,t=1E[zs(h)zt(h)] < ∞, and covariance function

E[Z(h)Z(h̃)] = limn→∞ n−1
∑n

s,t=1E[zs(h)zt(h̃)]. Then for some {Z(h) : h ∈ N} and some non-unique

sequence of positive integers {Ln}, Ln → ∞ and Ln = o(n):∣∣∣ϑ([ω(h)Zn(h)]
Ln
h=1

)
− ϑ

(
[ω(h)Z(h)]Ln

h=1

)∣∣∣ ≤ ϑ([ω(h)Zn(h)− ω(h)Z(h)]Ln
h=1

)
p→ 0.

Remark 8. If an estimator θ̂n is not required then D(h) = 0 and the covariance function E[Z(h)Z(h̃)]
reduces accordingly. If additionally ϵt is iid under the null then E[Z(h)Z(h̃)] = E[ϵ2t ϵ

2
t−h]/(E[ϵ2t ])

2,

which equals 1 if h ̸= 0, and otherwise E[ϵ4t ]/(E[ϵ2t ])
2. If θ̂n is not required then in principle we can

bypass our array convergence argument and use the Gaussian approximation argument in, for example,

Chernozhukov, Chetverikov, and Kato (2013). However, we do not know if their argument extends to

non-independent data, while ϵtϵt−h in the paper is only required to be NED and ergodic. Indeed, the

array convergence argument for Lemma A.1 does not rely on probabilistic properties at all. The NED

assumption merely ensures convergence in finite dimensional distributions.

Combine Lemmas 2.1 and 2.2 and invoke the triangle inequality to yield the following main result.

Theorem 2.3. Under Assumptions 1 and 2, |ϑ([
√
nω̂n(h){ρ̂n(h) − ρ(h)}]Ln

h=1) − ϑ([ω(h)Z(h)]Ln
h=1)|

p→ 0

for some sequence of positive integers {Ln} that is not unique, Ln →∞ and Ln = o(n), where {Z(h) : h ∈
N} is a zero mean Gaussian process with variance limn→∞ n−1

∑n
s,t=1E[zs(h)zt(h)] <∞, and covariance

function limn→∞ n−1
∑n

s,t=1E[zs(h)zt(h̃)]. Therefore under the null hypothesis |ϑ([
√
nω̂n(h)ρ̂n(h)]

Ln
h=1)

− ϑ([ω(h)Z(h)]Ln
h=1)|

p→ 0, where {Z(h) : h ∈ N} is a zero mean Gaussian process with variance

limn→∞ n−1
∑n

s,t=1E[rs(h)rt(h)] < ∞ and rt(h) ≡ {ϵtϵt−h− D(h)′Amt}/E[ϵ2t ].

We now have a fundamental result for the maximum weighted autocorrelation under white noise.
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Corollary 2.4. Under Assumptions 1 and 2, |max1≤h≤Ln |
√
nω̂n(h){ρ̂n(h) − ρ(h)}| −

max1≤h≤Ln |ω(h)Z(h)||
p→ 0 for some sequence of positive integers {Ln} that is not unique, Ln → ∞

and Ln = o(n), where {Z(h) : h ∈ N} is defined in Theorem 2.3. Therefore, under the white noise null

hypothesis |max1≤h≤Ln |
√
nω̂n(h)ρ̂n(h)| − max1≤h≤Ln |ω(h)Z(h)||

p→ 0.

Remark 9. The conclusions of Theorem 2.3 and Corollary 2.4 do not require ϑ([
√
nω̂n(h)ρ̂n(h)]

Ln
h=1) to

have a well defined limit law under the null. This is decidedly different from the max-correlation literature

in which limn→∞max1≤h≤Ln |ω(h)Z(h)| is characterized under suitable conditions that ensure asymptotic

independence E[Z(i)Z(j)] → 0 as |i − j| → 0. See, e.g., Leadbetter, Lindgren, and Rootzén (1983,

Chapter 6) and Hüsler (1986). We do not require asymptotic independence, nor therefore convergence

in law.

2.2 Bootstrapped P-Value Test

We work with the Shao’s (2011) dependent wild bootstrap. Recall mt(θ) are the estimating equations

for θ̂n, let Ân be a consistent estimator of A in Assumption 2.c, and define

D̂n(h) ≡
1

n

n∑
t=h+1

{(
ϵt(θ̂n)st(θ̂n) +

Gt(θ̂n)

σt(θ̂n)

)
ϵt−h(θ̂n) + ϵt(θ̂n)

(
ϵt−h(θ̂n)st−h(θ̂n) +

Gt−h(θ̂n)

σt−h(θ̂n)

)}
. (7)

We now operate on Ên,t,h(θ̂n) ≡ ϵt(θ̂n)ϵt−h(θ̂n) − D̂n(h)
′Ânmt(θ̂n), an approximation of ϵt(θ̂n)ϵt−h(θ̂n)

expanded around θ0 under H0, cf. Lemma 2.1.

In practice Gt(θ) and σt(θ) are typically unobserved and must be iteratively approximated based

on initial conditions. Examples include linear and nonlinear AR-GARCH models. In such cases D̂n(h)

is infeasible. Meitz and Saikkonen (2011), amongst others, lay out sufficient conditions for the QML

estimator for a large class of AR-GARCH models to be consistent and asymptotically normal, including

smoothness conditions similar to Assumption 2 that include Lipschitz properties imposed on f(xt, ϕ)

and σt(θ). In their setting, initial conditions vanish geometrically fast and therefore do not play a role

in asymptotics both for the QML estimator, and for sample statistics like a feasible version of D̂n(h).

See their Assumptions DGP, E, and C1-C3.

2.3 Dependent Wild Bootstrap

The wild bootstrap is proposed for iid and mds sequences (Wu, 1986, Liu, 1988, Hansen, 1996). Shao

(2010, 2011) generalizes the idea to allow for dependent sequences. Shao (2010) allows for general

dependence by using block-wise iid random draws as weights, with a covariance function that equals

a kernel function. His requirements rule out a truncated kernel, but allow a Bartlett kernel amongst

others. We follow Shao (2011) whose draws effectively have a truncated kernel covariance function.

The algorithm is as follows. Set a block size bn such that 1 ≤ bn < n, bn →∞ and bn/n→ 0. Denote

the blocks by Bs = {(s− 1)bn +1, . . . , sbn} with s = 1, . . . , n/bn. Assume for simplicity that the number
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of blocks n/bn is an integer. Generate iid random numbers {ξ1, . . . , ξn/bn} with E[ξi] = 0, E[ξ2i ] = 1, and

E[ξ4i ] < ∞. Define an auxiliary variable φt = ξs if t ∈ Bs. Compute T̂ (dw)
n ≡ ϑ([

√
nρ̂

(dw)
n (h)]Ln

h=1) from:

ρ̂(dw)
n (h) ≡ 1

1/n
∑n

t=1 ϵ
2
t (θ̂n)

1

n

n∑
t=1+h

φt

{
Ên,t,h(θ̂n)−

1

n

n∑
s=1+h

Ên,s,h(θ̂n)

}
. (8)

Repeat M times, resulting in bootstrapped statistics {T̂ (dw)
n,i }Mi=1, and an approximate p-value p̂

(dw)
n,M ≡

1/M
∑M

i=1 I(T̂
(dw)
n,i ≥ T̂n). The test proposed rejects the null at nominal size α when p̂

(dw)
n,M < α. The

wild bootstrap has block size bn = 1 and no re-centering with 1/n
∑n

s=1+h Ên,s,h(θ̂n).
We use a sample version of the first order expansion variable ϵtϵt−h − D(h)′Amt from Lemma 2.1.

It is incorrect to use just ϵt(θ̂n)ϵt−h(θ̂n), as with:

ρ̂(dw)
n (h) ≡ 1

1/n
∑n

t=1 ϵ
2
t (θ̂n)

1

n

n∑
t=1+h

φt

{
ϵt(θ̂n)ϵt−h(θ̂n)−

1

n

n∑
s=1+h

ϵt(θ̂n)ϵt−h(θ̂n)

}
. (9)

This follows since φt is mean zero and independent of the data, hence 1/n
∑n

t=1+h φtϵt(θ̂n)ϵt−h(θ̂n) =

1/n
∑n

t=1+h φtϵtϵt−h + op(1/
√
n), yet 1/n

∑n
s=1+h ϵt(θ̂n)ϵt−h(θ̂n) = E[ϵtϵt−h] + Op(1/

√
n) by standard

first order arguments and E[mt] = 0. Hence,
√
nρ̂

(dw)
n (h) from (9) is equivalent to 1/

√
n
∑n

t=1+h φtϵtϵt−h/E[ϵ2t ]

asymptotically with probability approaching one, which under the null has the same asymptotic prop-

erties as 1/
√
n
∑n

t=1+h ϵtϵt−h/E[ϵ2t ]. The latter is not equivalent to the Lemma 2.1 first order expansion

process {Zn(h)} because asymptotic information from the estimator θ̂n has been scrubbed out by the

bootstrap variable φt. The bootstrapped ρ̂
(dw)
n (h) in (8), however, contains the required information.

Shao (2011) imposes Wu’s (2005) moment contraction property with an eighth moment, which we

denote MC8 (see Appendix B in Hill and Motegi, 2018, for details). He then applies a Hilbert space

approach for weak convergence of a spectral density process {Ŝn(λ) : λ ∈ [0, π]} to yield convergence for∫ π
0 Ŝ

2
n(λ)dλ.

5 Only observed data are considered. There are several reasons why a different approach is

required here. First, Ŝn(λ) is a sum of all {γ̂n(h) : 1 ≤ h ≤ n − 1}, and Shao (2011, proof of Theorem

3.1) uses a variance of conditional variance bound for probability convergence based on Chebyshev’s

inequality. This requires E[ϵ8t ] < ∞ and a complicated eighth order joint cumulant series bound which

is only known to hold when ϵt is geometric MC8 (see Shao and Wu, 2007). Second, we only need

convergence in distribution of
√
nγ̂n(h), coupled with a new array convergence result, which are easier

to handle than weak convergence of {Ŝn(λ) : λ ∈ [0, π]} on a Hilbert space. Third, the supremum is not

a continuous mapping from the space of square integrable (with respect to Lebesgue measure) functions

on [0, π]. It is therefore not clear how, or if, Shao’s (2011: Theorem 3.1) proof applies to our statistic.

In order to prove that the bootstrapped ρ̂
(dw)
n (h) has the same finite dimensional limit distributions as

ρ̂n(h) under the null, it is helpful to have the equations mt(θ) in the Assumption 2.c expansion
√
n(θ̂n −

θ0) = An−1/2
∑n

t=1mt(θ0) + op(1) to be a smooth parametric function for a required uniform law of large

numbers. As with response smoothness under Assumption 2.a,b, more general smoothness properties

5See, e.g., Politis and Romano (1994) for applications of weak convergence in a Hilbert space to the bootstrap.
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are achievable at the expense of more intense notation.6

Assumption 2.c′. θ̂n ∈ Θ for each n, and for a unique interior point θ0 ∈ Θ we have
√
n(θ̂n − θ0)

= An−1/2
∑n

t=1mt(θ0) + op(1), with Ft-measurable estimating equations mt = [mi,t]
km
i=1 : Θ → Rkm for

km ≥ kθ; and non-stochastic A ∈ Rkθ×km. mt(θ) is twice continuously differentiable, (∂/∂θ)jmt(θ) is

Borel measurable for each θ and j = 1, 2, and E[supθ∈Θ |(∂/∂θ)imj,t(θ)|] < ∞ for each i = 0, 1, 2 and j

= 1, ..., km. Moreover, zero mean mt is stationary, ergodic, Lr/2-bounded and L2-NED with size 1/2 on

{υt}, where r > 4 and {υt} appear in Assumption 1.b.

The bootstrapped p-value leads to a valid and consistent test.

Theorem 2.5. Let Assumptions 1, 2.a,b,c′,d hold, and let the number of bootstrap samples M = Mn

→ ∞. There exists a non-unique sequence of maximum lags {Ln}, Ln → ∞ and Ln = o(n), such that

under H0, P (p̂
(dw)
n,M < α) → α, and if H0 is false then P (p̂

(dw)
n,M < α) → 1.

Remark 10. A similar theory applies to an approximate p-value computed by wild bootstrap where φt

is iid N(0, 1), provided ϵt forms a mds under the null.

Remark 11. The test operates on
√
nρ̂n(h) and

√
nρ̂

(dw)
n (h) and therefore achieves the parametric rate

of local asymptotic power against the sequence of alternatives: HL
1 : ρ(h) = r(h)/

√
n for each h where

r(h) are fixed constants, |r(h)| ≤
√
n. See Hill and Motegi (2018, Appendix D, especially Theorem D.1).

3 Automatic Maximum Lag Selection

We approach lag selection from the perspective of the practitioner by providing a data-driven, or au-

tomatic, lag selection method. Our method closely follows Escanciano and Lobato (2009), whose work

is motivated by the automatic Neyman test proposed in Inglot and Ledwina (2006). Let L∗n denote the

data-driven lag selected. Under H0, Escanciano and Lobato’s (2009) method leads to P (L∗n = 1) → 1

because higher lags do not provide useful information and incur a high penalty for their use (see below

for details). Contrary to their Q-test method, however, we allow Ln → ∞ and by using a bootstrap we

do not need to standardize the sample autocorrelations.

In theoretical terms, as explained above, when using filtered data we cannot pinpoint an upper bound

on the rate of increase of Ln because the Lemma 2.1 expansion cannot rely on a Gaussian approximation

theory as in Chernozhukov, Chetverikov, and Kato (2013, 2014, 2015, 2017), nor extreme value theory

arguments as in Xiao and Wu (2014). We therefore assume an upper bound {L̄n} on the growth of Ln.
Let {L̄n} be such that L̄n → ∞. We only consider sequences {Ln} that satisfy Ln/L̄n → [0,K] for any

finite k > 0 and we assume the results of Section 2 hold for any such {Ln}. We save notation by fixing

K = 1. The proof of Theorem 3.1 below requires L̄n = o(n/ ln(n)) in order to expedite the proof.

6Nonsmoothness can be allowed provided certain bracketing or other smoothness properties are applied like a Lipschitz
condition or the Vapnick-Chervonenkis class, which ensure a required stochastic equicontinuity condition. See, e.g., Andrews
(1987), Arcones and Yu (1994) and Gaenssler and Ziegler (1994).
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In order to ease notation, we only work with the max-correlation statistic and weight ω̂n(h) = 1, but

all subsequent results carry over to the general transform ϑ and general ω̂n(h)
p→ ω(h) > 0.

We also need to allow for selection of any positive integer sequence {Ln} that satisfies Ln/L̄n → [0, 1],

hence Ln → (0,∞] is assumed such that Ln → L, a finite positive integer, is possible. This is required

because Escanciano and Lobato’s (2009) method leads to P (L∗n = 1) → 1 under H0. See Remark 6 for

discussion of the validity of our main results when Ln → (0,∞).

Escanciano and Lobato (2009) work with a penalized Q-statistic, with a penalty that is an increasing

function of the number of included lags. Similarly, define the penalized max-correlation test statistic

T̂ P
n (L) ≡ T̂n(L)− Pn(L) where T̂n(L) ≡

√
n max

1≤h≤L
|ρ̂n(h)| (10)

with penalty Pn(·). The penalty function is:

Pn(L) =

{ √
L lnn if T̂n(L) ≤

√
q lnn√

2L if T̂n(L) >
√
q lnn

(11)

where q is a fixed positive constant. A small value of q leads to the AIC penalty
√
2L being chosen with

high probability, while a large q promotes selection of the BIC penalty. Escanciano and Lobato (2009)

use q = 2.4, a choice motivated by their own simulation evidence, and evidence from Inglot and Ledwina

(2006). Inglot and Ledwina (2006) develop an automatic Neyman test, and the portmanteau test ex-

plored in Escanciano and Lobato (2009) belongs to a class of smooth tests proposed in Neyman (1937).

Hence, it is not surprising that their q values are similar. We find a slightly larger value q = 3.25 leads

to strong results across null and alternative hypotheses for our test: see the discussion in Section 4.1,

and see Figure 1.

The chosen maximum lag L∗n is:

L∗n = min
{
Ln : 1 ≤ Ln ≤ L̄n : T̂ P

n (Ln) ≥ T̂ P
n (l) for each l = 1, ..., L̄n

}
. (12)

We chose {Ln} from those integer sequences satisfying Ln ≥ 1 and Ln ≤ L̄n to ensure Ln/L̄n→ [0, 1] holds

in practice, but in theory we may select any {Ln} such that Ln ≥ 1 and Ln/L̄n → [0, 1]. Notice l may be

a function of n, e.g. l = L̄n − 1. The penalties (
√
L lnn,

√
2L) are related to Escanciano and Lobato’s

(2009: p. 144) penalties (L lnn, 2L) for a fixed horizon Q-statistic. We need the square root because the

max-correlation operates on
√
nρ̂n(h) rather than nρ̂2n(h). Contrary to Escanciano and Lobato (2009),

however, our test statistic and penalty are based on the max-correlation, we allow for diverging sequences

{Ln}, and we do not need to standardize the correlations because we use a bootstrap.7

Define h∗ ≡ min{h : h = argmax1≤h≤∞ |ρ(h)|}, the smallest lag at which the largest correlation in

magnitude occurs.

7Escanciano and Lobato (2009, second remark following Theorem 2) claim that a diverging maximum lag is possible for
their Q-test and maximum lag, but an asymptotic theory is not presented.
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Theorem 3.1. Let Assumptions 1 and 2 hold, and let L̄n = o(n/ ln(n)). a. Under H0, P (L∗n = 1) →
1; and b. under H1, L∗n

p→ h∗.

Remark 12. Under H1 the optimal lag selected satisfies L∗n
p→ h∗. Notice h∗ may be any value in N

because we allow the maximum lag under consideration for finite samples to diverge L̄n → ∞. This

ensures a consistent white noise test. The reason h∗ is selected asymptotically is the penalized max-

correlation favors choosing lags that are at least as large as the most informative lag(s), the lag(s) at which

the max-correlation takes place. A nice advantage of the procedure is L∗n converges to the smallest of

such most informative lags, ensuring the greatest number of data points possible are used for computing

that correlation magnitude. A portmanteau statistic, however, sums over all squared correlations over

a finite set of lags, hence its version is optimized at the largest fixed lag h̄ under consideration, hence

P (L∗n = h̄) → 1 (see the proof of Theorem 2 in Escanciano and Lobato, 2009).

4 Monte Carlo Experiments

We now perform a Monte Carlo experiment to gauge the merits of the max-correlation test and automatic

lag (labeled as T̂ dw(L∗n)). A main competitor studied here is a Shao’s (2011) dependent wild bootstrap

spectral Cramér-von Mises test (labeled as CvMdw). See Section 4.1 for the simulation design and

Section 4.2 for results. In the supplemental material Hill and Motegi (2018, Appendix G) we study

other tests, including the max-correlation with a pre-chosen non-random lag Ln, the Ljung-Box test,

Hong’s (1996) test is based on a standardized periodogram, a CvM test with Zhu and Li’s (2015) block-

wise random weighting bootstrap, and Andrews and Ploberger’s (1996) sup-LM test with the dependent

wild bootstrap. CvMdw is one of the strongest competitors in terms of empirical size and power.

4.1 Simulation Design

We consider a variety of data generating processes, filters, and estimation methods. We first construct

an error term et that drives an observed variable yt. Let νt be iid N(0, 1). We consider iid et = νt;

GARCH(1,1) et = νtwt with random volatility process w2
1 = 1 and w2

t = 1+ 0.2e2t−1 + 0.5w2
t−1 for t ≥ 2;

MA(2) et = νt + 0.5νt−1 + 0.25νt−2 for t ≥ 3, with initial values e1 = 0 and e2 = ν2 + 0.5ν1; and AR(1)

et = 0.7et−1 + νt for t ≥ 2 with initial e1 = 0. Each error process is strictly stationary and ergodic.8 We

use each of the four error terms in each of the following six scenarios.

Scenario #1: Simple yt = et; mean filter ϵt = yt − E[yt]; ϕ̂n = 1/n
∑n

t=1 yt.

Scenario #2: Bilinear yt = 0.5et−1yt−2 + et; mean filter ϵt = yt − E[yt]; ϕ̂n = 1/n
∑n

t=1 yt.

Scenario #3: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et; AR(2) filter ϵt = yt − ϕ1yt−1 − ϕ2yt−2; least

squares.
8Ergodicity follows since each error process is stationary α-mixing. See, e.g., Kolmogorov and Rozanov (1960) for

processes with continuous bounded spectral densities (e.g. stationary Gaussian AR, Gaussian MA(2)); Nelson (1990) for
GARCH process stationarity; and Carrasco and Chen (2002) for mixing properties of stationary GARCH processes.
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Scenario #4 : AR(2) yt = 0.3yt−1 − 0.15yt−2 + et; AR(1) filter ϵt = yt − ϕ1yt−1; least squares.

Scenario #5: GARCH(1,1) yt = σtet, σ
2
t = 1 + 0.2y2t−1 + 0.5σ2t−1; no filter.

Scenario #6: GARCH(1,1) yt = σtet, σ
2
t = 1+0.2y2t−1+0.5σ2t−1; GARCH(1,1) filter ϵt = yt/σt

with σ2t = ω + αy2t−1 + βσ2t−1; quasi-maximum likelihood.9

In #5 and #6, et is standardized so that E[e2t ] = 1.

The null is true for #1, #2, #3, #5 and #6 when the error et is iid or GARCH. For #4 the null is

false for any error et because a misspecified AR(1) filter is used. This results in an AR(1) test variable

ϵt, with geometrically decaying autocorrelations when et is iid or GARCH.

In #1–#4, yt is stationary for each error. The GARCH(1,1) process in #5–#6 is strong when et

is iid, and semi-strong when et is GARCH(1,1) since it is an adapted mds (Drost and Nijman, 1993),

hence in those cases yt is stationary (Nelson, 1990, Lee and Hansen, 1994). If et is MA(2) or AR(1),

then both {et, yt} are serially correlated. In the MA(2) error case, it can be verified that GARCH yt is

stationary due to the finite feedback structure. It is unknown whether GARCH yt with an AR(1) error

has a stationary solution (see, e.g., Drost and Nijman, 1993, Straumann and Mikosch, 2006).

All of our chosen tests require a finite fourth moment on the test variable ϵt, and in all cases E[e4t ] <

∞. In #1–#4, E[ϵ4t ] < ∞ holds for each error type et. In Scenario #6 we test the standardizd error ϵt

= et = yt/σt which has a finite fourth moment in all cases.

In Scenario #5, however, we test GARCH ϵt = yt itself. E[ϵ4t ] < ∞ holds when et is iid or MA(2),

but it is unknown whether a fourth moment exists when et is GARCH(1,1) or AR(1). Test results in the

latter case should therefore be interpreted with some caution.

We also consider three additional scenarios in which remote autocorrelations are present. Only an

iid error et is used for the following processes in order to focus in autocorrelation remoteness.

Scenario #7: Remote MA(6) yt = et +0.25et−6; mean filter ϵt = yt−E[yt]; ϕ̂n = 1/n
∑n

t=1 yt.

Scenario #8: Remote MA(12) yt = et+0.25et−12; mean filter ϵt = yt−E[yt]; ϕ̂n = 1/n
∑n

t=1 yt.

Scenario #9: Remote MA(24) yt = et+0.25et−24; mean filter ϵt = yt−E[yt]; ϕ̂n = 1/n
∑n

t=1 yt.

In Remote MA(q), ρ(h) ̸= 0 if and only if h = q. Hence, any test with a maximum lag less than q

should fail to detect the serial dependence.

We draw J = 1000 Monte Carlo samples of size n ∈ {100, 250, 500, 1000}. We draw 2n observations

and retain the last n observations for analysis. The rejection frequency of any test corresponds to its

empirical size when the tested variable ϵt is white noise, and empirical power when ϵt is correlated. In

Table 1 we summarize the dependence property of ϵt under each scenario and error et.

9QML is performed using the iterated process σ̃2
1(θ) = ω and σ̃2

t (θ) = ω + αy2
t−1 + βσ̃2

t−1(θ) for t = 2, . . . , n. We impose
(ω, α, β) > 0 and α + β ≤ 1 during estimation.
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Table 1: Dependence of Test Variable ϵt under Each Scenario, Error et, and Filter

Scenario: Model and Filter

#1 #2 #3 #4 #5 #6 #7, #8, #9
Simple Bilinear AR(2) AR(2) GARCH GARCH Remote MA

et \ filter - - AR(2) filter AR(1) filter - GARCH filter -

iid iid wn iid corr mds iid remote corr
GARCH mds wn mds corr mds mds not considered
MA(2) corr corr corr corr corr corr not considered
AR(1) corr corr corr corr corr corr not considered

wn = non-mds white noise. corr = autocorrelated. remote corr = autocorrelation is present at a remote lag. bold

text is used to highlight when the null is true.

Our proposed test is the max-correlation test with the dependent wild bootstrap and automatic lag,

T̂ dw(L∗n). The test statistic is T̂n(L∗n) ≡
√
nmax1≤h≤L∗

n
|ω̂n(h)ρ̂n(h)| with weight ω̂n(h) = 1.10 We

compute the bootstrapped statistic T̂ (dw)
n,i (L∗n,i) ≡

√
nmax1≤h≤L∗

n,i
|ρ̂(dw)

n,i (h)| for each bootstrap sample

i ∈ {1, . . . ,M} with M = 500. ρ̂
(dw)
n,i (h) is computed via (8) based on the Lemma 2.1 correlation

expansion, which correctly accounts for the first order (asymptotic) impact of the ith sample’s plug-in

θ̂n,i. Note that L∗n,i is the automatic lag for the ith bootstrap sample specifically. The dependent wild

bootstrap requires a choice of block size bn. Shao (2011) uses bn = b
√
n with b ∈ {.5, 1, 2}, leading to

qualitatively similar results. We therefore use the middle value b = 1.11 The approximate p-value is

computed as p̂
(dw)
n,M = 1/M

∑M
i=1 I(T̂

(dw)
n,i (L∗n,i) ≥ T̂n(L∗n)).

The automatic lag selection requires a choice of the maximum possible lag length L̄n = o(n/ ln(n))

and the tuning parameter q (cf. (11) and (12)). We set L̄n = [δ × n/(lnn)4/3] with δ = 1.5 so that

L̄n ∈ {19, 38, 65, 114} for n ∈ {100, 250, 500, 1000}, respectively. Our choice satisfies the requirement

L̄n = o(n/ ln(n)), and gives a reasonable increase with n. Similar values lead to qualitatively similar

results.

In order to choose a plausible value of q, we perform a preliminary simulation study that computes em-

pirical size and size-adjusted power for the max-correlation test with T̂n(L∗n) across q ∈ {1.50, 1.75, . . . , 4.50}.
We consider two cases in order to highlight empirical size and power properties. In Case 1, size is com-

puted under Scenario #1 with an iid error; and size-adjusted power is computed under #4 with an iid

error. In Case 2, size is computed under #5 with an iid error; and size-adjusted power is computed

under #5 with MA(2) error. For each case, sample size is n ∈ {100, 500}; nominal size is α = 0.05;

J = 1000 Monte Carlo samples and M = 500 bootstrap samples are generated. See Figure 1 for results.

Variation of empirical size and size-adjusted power for the test based on T̂ dw(L∗n) across the values of

q is fairly small in each experiment, implying that a choice of q should not have a critical impact on

10Other plausible weights include an inverted standard deviation based on a HAC estimator, and/or the Ljung and Box
(1978) weights. It is left as a future task to investigate how small sample performance changes under those weights. In the
present paper, we demonstrate that the uniform weight leads to sharp size and high power.

11In simulations not reported here, we compared bn = b
√
n across b ∈ {.5, 1, 2} and found there is little difference in test

performance.
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the test performance. For each case and sample size, we obtain relatively accurate size and high power

around q = 3.25. We therefore use q = 3.25 throughout.

We also perform the dependent wild bootstrap Cramér-von Mises test in Shao (2011), CvMdw. This

test is based on the sample spectral distribution function Fn(λ) ≡
∫ λ
0 In(ω)dω with periodogram In(ω)

≡ (2π)−1
∑n−1

h=1−n γ̂n(h)e
−hω. Define:

Sn(λ) ≡
√
n(Fn(λ)− γ̂n(0)ψ0(λ)) =

n−1∑
h=1

√
nγ̂n(h)ψh(λ),

where ψh(λ) = (hπ)−1 sin(hλ) if h ̸= 0, else ψh(λ) = λ(2π)−1. The CvM test statistic is Cn =
∫ π
0 S

2
n(λ)dλ,

which has a non-standard limit distribution under the null.12 We then use Shao’s (2011, Section 3)

dependent wild bootstrap based on the Lemma 2.1 correlation expansion to compute an approximate

p-value. Note that all Ln = n− 1 lags are used by construction. Shao (2011) does not consider the use

of a filter, but we apply the test to all scenarios for the sake of comparison.

4.2 Simulation Results

We first check the performance of the automatic lag selection itself. Recall that by Theorem 3.1 L∗n
p→

1 under H0, and under H1 L∗n → h∗, the smallest lag at which the largest correlation occurs. Under

Scenarios #1-#6 when the error et is iid or GARCH the null is false only for #4. In the latter case, the

test variable ϵt is AR(1) hence it’s h∗ = 1.

In Table 2 we report the median of optimal lags {L∗(1)n , . . . ,L∗(J)n } for each scenario, where L∗(j)n is

the jth sample’s optimal lag. We also report the smallest lag at which the largest correlation occurs, h∗.

In most cases we compute h∗ analytically. In a few cases an analyitic solution is not feasible so we use

a large sample simulation. We generate 50, 000 samples of size n = 50, 000, and the autocorrelations for

ϵt for each sample. We then report the median computed h∗ across all samples.

In #1–#6, when H0 is true or autocorrelations exist at small lags, the median of L∗n,j is 1 or 2. This

(nearly) matches the predictions of Theorem 3.1 and the reported h∗ in most cases. In just two cases, (i)

bilinear with GARCH error and (ii) GARCH with GARCH error and without a filter, the reported h∗ is

4. This is higher than the optimally selected lag (1 or 2). These are the only cases where the median of

L∗n,j deviates by more than 0 or 1 from h∗. In both of these cases the process is highly volatile, possibly

causing the abberant result. As suggested in Section 4.1, either of these processes may fail the required

moment conditions for the underlying theory surrounding L∗n.
In #7–#9, where autocorrelations exist at remote lags, the median of L∗n,j pinpoints those lags given

a large enough sample size. Under Remote MA(12), for example, the median is 1 for n ≤ 250 but exactly

12 for n ≥ 500.

We now report rejection frequencies associated with nominal size α ∈ {.01, .05, .10}. See Table 3 for

T̂ dw(L∗n) under #1–#6; see Table 4 for CvMdw under #1–#6; and see Table 5 for both tests under

12In practice we use a numerical integral based on the midpoint approximation with the increment of .01.
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#7–#9.

4.2.1 Empirical Size

We begin with Scenario #1 (simple), n = 100, and iid error. The empirical size with respect to nominal

sizes α ∈ {.010, .050, .100} is {.011, .058, .108} for T̂ dw(L∗n) and {.023, .081, .138} for CvMdw, hence

T̂ dw(L∗n) has sharp size, and sharper than CvMdw. A similar implication holds for #2 (bilinear), n = 100,

and iid error, where the empirical size is {.009, .060, .107} for T̂ dw(L∗n) and {.018, .076, .149} for CvMdw.

In general, size f or the test based on T̂ dw(L∗n) is at least as good as (and often better than) size associated

with CvMdw.

The reason why T̂ dw(L∗n) achieves sharp size in most cases is that, as confirmed in Table 2, L∗n is

sufficiently close to 1 in most samples under H0. That feature cuts redundant lags and improves the

size of the test. In fact, we find in the supplemental material Hill and Motegi (2018, Appendix G) that

T̂ dw(L∗n) achieves the sharpest size among a varety of tests.13 CvMdw uses all Ln = n− 1 lags, but the

greatest weight is assigned to small lags by construction. Hence CvMdw leads to have fairly accurate

size in most cases, although generally the max-correlation test dominates.

4.2.2 Empirical Power

In #1–#6, the relative performance of T̂ dw(L∗n) and CvMdw under H1 varies across cases. The former

is more powerful than the latter in some cases, but not in other cases. In general, there is not a drastic

gap between the two tests. See #2, n = 1000, and AR(1) error, for example. The empirical power with

respect to α ∈ {.010, .050, .100} is {.732, .822, .856} for T̂ dw(L∗n) and {.474, .697, .810} for CvMdw. But

in #3, with n = 1000, and an AR(1) error, power is {.616, .841, .913} for T̂ dw(L∗n) and {.688, .876, .923}
for CvMdw.

In #7–#9, however, T̂ dw(L∗n) dominates CvMdw completely (see Table 5). T̂ dw(L∗n) successfully

detects remote autocorrelations given a large enough sample size, while CvMdw fails to detect them.

The power of T̂ dw(L∗n) under #8 (Remote MA(12)), for instance, is {.019, .077, .132} for n = 100,

{.029, .151, .249} for n = 250, {.377, .652, .717} for n = 500, and {.985, .993, .993} for n = 1000. Logi-

cally power is better detected as n grows. The reason that T̂ dw(L∗n) detects remote autocorrelations is

confirmed in Table 2 (cf. Theorem 3.1.b): L∗n converges to h∗ = 12 when n ≥ 500. The power of CvMdw,

by contrast, is {.034, .110, .179} for n = 100, {.025, .087, .155} for n = 250, {.026, .092, .161} for n = 500,

and {.017, .083, .166} for n = 1000. CvMdw has (almost) no power against the remote autocorrelation

even when n = 1000. In fact, we find in Hill and Motegi (2018, Appendix G) that T̂ dw(L∗n) is the only

test that has power against remote autocorrelations among a variety of tests which have decent size.

13In Scenario #2 (bilinear) with a GARCH error, the max-correlation test is undersized, even in large samples n = 1000.
The primary cause is the bilinear process combined with a GARCH error results in extreme volatility, which undermines the
efficacy of the bootstrap. The test is even more undersized under Scenario #5 (GARCH) with a GARCH error. The CvM
test is also undersized for Scenario #2 with a GARCH error. It is, however, less affected than the max-correlation test in
Scenario #5 with a GARCH error. Weighting the correlations for a max-correlation test might alleviate the under-rejection,
for example using weights equal to the inverted standard errors. The least volatile correlations in this case are given the
greatest weight. We leave that possibility for a future project.

19



The reason why CvMdw fails to capture remote autocorrelations is that it incorporates all available

sample correlations, while assigning the greatest weight to small lags. That feature delivers sharp size

and high power against adjacent correlations like Scenarios #1–#6, but critically low power against

remote correlations like Scenarios #7–#9.

The (non-weighted) max-correlation, by contrast, operates on the most informative serial correlation

over a range of lags {1, ...,L∗n}. The optimal maximum lag selected L∗n asymptotically hones in on the

most informative lag range: the range that includes the smallest lag at which the greatest correlation

in magnitude occurs. Thus, in large samples in particular, T̂ dw(L∗n) delivers the single most informative

serial correlation for test purposes, as opposed to a weighted sum of all, and therefore potentially less

useful, correlations. That feature itself generally delivers accurate size (or under-rejections in some cases)

and competitive power for Scenarios #1-#6, and dominant power against remove correlations.

In some cases against adjacent correlations power is not dominant when a large pre-chosen non-

random Ln is used (see Hill and Motegi, 2018, Appendix G), but such a shortcoming is alleviated by using

our proposed automatic lag L∗n. The combined max -correlation with automatic lag and bootstrapped

p-value leads to a dominant test over all when size and power are considered, in comparison to a variety

of tests.

5 Conclusion

We present a bootstrap max-correlation test of the white noise hypothesis for regression model residuals.

The maximum correlation over an increasing lag length has a long history in the statistics literature, but

only in terms of characterizing its limit distribution using extreme value theory and only for observed

data. We apply a bootstrap method to a first order correlation expansion in order to account for the

impact of a plug-in θ̂n used to compute model residuals. We prove that Shao’s (2011) dependent wild

bootstrap yields a valid test in a more general environment than Shao (2011) or Xiao and Wu (2014)

considered. Our approach does not require showing that the original and bootstrapped max-correlation

test statistics have the same limit properties under the null, allowing us to bypass the extreme value

theory approach altogether. We also extend Escanciano and Lobato’s (2009) automatic lag selection to

our setting with an (asymptotically) unbounded lag set. We prove that the automatic lag converges in

probability to one under the null, and the smallest lag at which the largest correlation in magnitude

occurs under the alternative. In both cases, the procedure hones in on the most informative lag, offering

the greatest number of data points for analysis, for the given hypothesis.

Simulation experiments show that our test with the automatic lag generally out-performs a variety

of other tests. It achieves sharper empirical size in most cases than other tests since the automatic

lag L∗n is sufficiently close to 1 under the null hypothesis. When there exist serial correlations at small

lags, the max-correlation test and some strong competitors such as the Cramér-von Mises test with the

dependent wild bootstrap lead to roughly comparable empirical power. When there exist correlations

only at remote lags, the max-correlation test has high power while the Cramér-von Mises test has almost
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no power. Other tests also have comparatively lower power. This striking difference stems from the fact

that the automatic lag L∗n pinpoints the relevant remote lag, while other tests by constrction incorporate

many lags into a test statistic (the CvM test gives the greatest weight to low lags, making it useless

against remote lags). In future work a deep examination of the max-correlation test with weights other

than unity should be performed, since sample autocorrelations with high dispersion weaken the efficacy

of the bootstrap and automatic lag selection.

A Appendix: Proofs

We assume all random variables exist on a complete measure space such that majorants and integrals

over uncountable families of measurable functions are measurable, and probabilities where applicable are

outer probability measures. See Pollard’s (1984: Appendix C) permissibility criteria, and see Dudley’s

(1984: p. 101) admissible Suslin property.

We use the following variance bound for NED sequences repeatedly. If wt is zero mean, Lp-bounded

for some p > 2, and L2-NED with size 1/2, on an α-mixing base with decay O(h−p/(p−2)−ι), then by

Theorem 17.5 in Davidson (1994) and Theorem 1.6 in McLeish (1975):

E

[(
1/
√
n
∑n

t=1
wt

)2]
= O(1). (A.1)

The following results are key steps toward sidestepping extreme value theory and Gaussian approxi-

mations when working with the maximum. The first result expands on a result in Boehme and Rosenfeld

(1974, Lemma 1) for first countable topological spaces. The latter is intimately linked to array conver-

gence implications of theory developed in Ramsey (1930), cf. Boehme and Rosenfeld (1974), Thomason

(1988) and Myers (2002). Recall that any metric space is a first countable topological space.

Lemma A.1. Assume the array {Ak,n : 1 ≤ k ≤ In}n≥1 lies in a first countable topological space, where

{In}n≥1 is a sequence of positive integers, In → ∞ as n → ∞. Let limn→∞Ak,n = 0 for each fixed k,

and Ak,n ≤ Ak+1,n for each n and all k. Then limn→∞ALn,n = 0 for some sequence {Ln} of positive

integers, Ln → ∞ that is not unique.

Proof.

Step 1. We will prove liml→∞AL(nl),nl
= 0 for some sequence of positive integers {nl}∞l=1, nl < nl+1

∀l, and some mapping L(nl) ≤ L(nl+1), L(nl) → ∞ and nl → ∞ as l → ∞. We use that result in Step

2 to prove the claim.

{Ak,n : 1 ≤ k ≤ In}n≥1 lies in a first countable topological space and limk→∞ limn→∞Ak,n = 0.

Therefore, by Lemma 1 in Boehme and Rosenfeld (1974) there exists a sequence of positive integers

{Li}∞i=1, Li → ∞ as i → ∞, and an integer mapping n(L) → ∞ as L → ∞ such that limi→∞ALi,n(Li)

= 0. The relation n(L) → ∞ as L → ∞ holds by construction of the array {Ak,n : 1 ≤ k ≤ In}n≥1 with

In → ∞ as n → ∞.
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We can always assume monotonicity: Li ≤ Li+1 ∀i. Simply note that limi→∞ALi,n(Li) = 0 implies

liml→∞ALil
,n(Lil

) = 0 for every infinite subsequence {il}l≥1 of {i}i≥1. Since Li →∞ as i → ∞, we can

find a subsequence {i∗l }l≥1 such that i∗l ≤ i∗l+1 and Li∗l ≤ Li∗l+1
for each l. This follows from the monotone

subsequence theorem, which itself follows from Ramsey’s (1930) theorem, cf. Erdös and Szekeres (1935)

and Burkill and Mirsky (1973). Now define L∗l ≡ Li∗l , hence liml→∞AL∗
l ,n(L

∗
l )

= 0 where L∗l ≤ L∗l+1 and

L∗l → ∞ as l → ∞.

Now let {ni}∞i=1 and {L(ni)}∞i=1 be any sequences satisfying ni = n(Li) and L(ni) = Li. Hence L(ni)
≤ L(ni + 1), L(ni) → ∞ and ni → ∞, such that limi→∞AL(ni),ni

= 0. Note that limi→∞AL(ni),ni
=

0 if and only if liml→∞AL(nil
),nil

= 0 for every subsequence {nil}∞l=1 of {ni}∞i=1. Since ni → ∞ as i →
∞, by the monotone subsequence theorem there exists a strictly monotonically increasing subsequence

{nil}∞l=1. Therefore, as required liml→∞AL(nl),nl
= 0 for some sequence of positive integers {nl}∞l=1, nl

< nl+1 ∀l, and L(nl) ≤ L(nl+1), L(nl) → ∞ and nl → ∞ as l → ∞.

Step 2. By assumption limn→∞Ak,n = 0 ∀k. Therefore:

lim
s→∞

Ak,ns = 0 for every k and every infinite subsequence {ns}s≥1 . (A.2)

Now repeat the Step 1 argument for each {Ak,ns}s≥1: there exists a strictly monotonically increasing

subsequence of positive integers {nsl}l≥1 and some integer mapping Ls(nsl) that may depend on s, with

nsl → ∞ and Ls(nsl) → ∞ as l → ∞ ∀s, such that liml→∞ALs(nsl
),nsl

= 0 ∀s. As above, we may take

Ls(·) to be monotonic: Ls(ñ) ≤ Ls(ñ + 1) ∀ñ.
Since monotonic Ls(ñ)→∞ as ñ→∞ ∀s, there exists an integer mapping L(·) such that L(n)→∞

as n → ∞ and for each s, lim supn→∞{L(n)/Ls(n)} < 1. By monotonicity Ak,n ≤ Ak+1,n this mapping

satisfies

lim
l→∞
AL(nsl

),nsl
≤ lim

l→∞
ALs(nsl

),nsl
= 0 ∀s. (A.3)

Notice L(·) is not unique: for any L(·) that satisfies (A.3) there exists L̃(n) → ∞ such that

lim supn→∞ L̃(n)/L(n) < 1, hence by monotonicity liml→∞AL̃(nsl
),nsl
≤ liml→∞AL(nsl

),nsl
= 0.

Now write Bn ≡ AL(n),n. By a direct implication of (A.2) and (A.3), for every subsequence {Bns}s≥1

there exists a further subsequence {Bnsl
}l≥1 that converges liml→∞ Bnsl

= 0. Therefore limn→∞ Bn = 0

(see Royden, 1988, p. 39). This proves limn→∞ALn,n = 0 with Ln = L(n) as required. QED.

The next result uses Lemma A.1 as the basis for deriving in probability convergence of a function of

an increasing set of random variables. Recall the continuous mapping ϑ : RLn → [0,∞) that satisfies

the following: lower bound ϑ(a) = 0 if and only if a = 0; upper bound ϑ(a) ≤ KLM for some K > 0

and any a = [ah]
L
h=1 such that |ah| ≤ M for each h; divergence ϑ(a) → ∞ as ||a|| → ∞; monotonicity

ϑ(aL1) ≤ ϑ([a′L1
, c′L2−L1

]′) where (aL, cL) ∈ RL, ∀L2 ≥ L1 and any cL2−L1 ∈ RL2−L1 ; and the triangle

inequality ϑ(a + b) ≤ ϑ(a) + ϑ(b) ∀a, b ∈ RLn .

Lemma A.2. Let {Xn(i),Yn(i) : 1 ≤ i ≤ In}n≥1 be arrays of random variables, where {In}n ≥ 1 is a

sequence of positive integers, In → ∞ as n → ∞.
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a. If Xn(i)
p→ 0 for each i then ϑ([Xn(i)]

Ln
i=1)

p→ 0 for some sequence {Ln} of positive integers with Ln
→ ∞. Moreover Ln = o(n) can always be assured.

b. If each Xn(i) − Yn(i)
p→ 0 then for some sequence {Ln} of positive integers with Ln →∞: |ϑ([Xn(i)]

Ln
i=1)

− ϑ([Yn(i)]Ln
i=1)| ≤ |ϑ([Xn(i) − Yn(i)]Ln

i=1)|
p→ 0. Moreover Ln = o(n) can always be assured.

Remark 13. Ln = o(n) is always possible due to monotonicity of ϑ. This is required for sample

correlation consistency.

Proof.

Claim (a). By assumption each Xn(i)
p→ 0, therefore ϑ([Xn(i)]

k
i=1)

p→ 0 for each k. Define Ak,n ≡ 1

− exp{−ϑ([Xn(i)]
k
i=1)} and Pk,n ≡

∫∞
0 P (Ak,n > ϵ)dϵ. By construction Ak,n ∈ [0, 1] a.s. ∀k. Lebesgue’s

dominated convergence theorem, and Ak,n
p→ 0, therefore yield for each k:

lim
n→∞

Pk,n = lim
n→∞

∫ ∞

0
P (Ak,n > ϵ) dϵ = lim

n→∞

∫ 1

0
P (Ak,n > ϵ) dϵ =

∫ 1

0
lim
n→∞

P (Ak,n > ϵ) dϵ = 0.

Now apply Lemma A.1 to Pk,n to deduce that there exists a positive integer sequence {Ln} that is not
unique, Ln → ∞ and Ln = o(n), such that limn→∞ PLn,n = limn→∞

∫ 1
0 P (ALn,n > ϵ)dϵ = 0. Therefore,

by construction E[ALn,n] =
∫ 1
0 P (ALn,n > ϵ)dϵ → 0. Hence ALn,n

p→ 0 by Markov’s inequality, which

yields ϑ([Xn(i)]
Ln
i=1)

p→ 0 as claimed.

The sequence {Ln} is not unique for either of the following reasons: (i) the probability limit is

asymptotic hence we can always change Ln for finitely many n; and (ii) by monotonicity of ϑ any other

{L̊n} that satisfies L̊n → ∞ and lim supn→∞{L̊n/Ln} < 1 satisfies ϑ([Xn(i)]
L̊n
i=1) ≤ ϑ([Xn(i)]

Ln
i=1)

p→ 0 as

n → ∞. Therefore we can always find {Ln}, Ln → ∞ and Ln = o(n), that satisfies ϑ([Xn(i)]
Ln
i=1)

p→ 0.

Claim (b). The mapping ϑ satisfies the triangular inequality and ϑ(·) ≥ 0. Apply the inequality

twice to yield ϑ([Xn(i)]
Ln
i=1) ≤ ϑ([Yn(i)]Ln

i=1) + ϑ([Xn(i) − Yn(i)]Ln
i=1) and ϑ([Yn(i)]

Ln
i=1) ≤ ϑ([Xn(i)]

Ln
i=1) +

ϑ([Xn(i) − Yn(i)]Ln
i=1), hence |ϑ([Xn(i)]

Ln
i=1) − ϑ([Yn(i)]Ln

i=1)| ≤ ϑ([Xn(i) − Yn(i)]Ln
i=1). Now apply (a) to

Xn(i) − Yn(i) to yield the desired result. QED.

Let h ≥ 0. Recall ρ(h) ≡ E[ϵtϵt−h]/E[ϵ2t ] and

Gt(ϕ) ≡
[
∂

∂ϕ′
f(xt−1, ϕ),0

′
kδ

]′
∈ Rkθ and st(θ) ≡

1

2

∂

∂θ
lnσ2t (θ)

D(h) ≡ E [(ϵtst +Gt/σt) ϵt−h] + E [ϵt (ϵt−hst−h +Gt−h/σt−h)] ∈ Rkθ

zt(h) ≡ rt(h)− ρ(h)rt(0) where rt(h) ≡
ϵtϵt−h − E [ϵtϵt−h]−D(h)′Amt

E
[
ϵ2t
] ,

where mt are the Assumption 2.c estimating equations. The following two lemmas are based on standard

arguments and are therefore proved in Hill and Motegi (2018, Appendix F).

Lemma A.3. Under Assumptions 1 and 2: Xn(h) ≡ |
√
n{ρ̂n(h) − ρ(h)} − n−1/2

∑n
t=1+h{rt(h) −

ρ(h)rt(0)}|
p→ 0 for each h.
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Recall

zt(h) ≡ rt(h)− ρ(h)rt(0) where rt(h) ≡
ϵtϵt−h − E [ϵtϵt−h]−D(h)′Amt

E
[
ϵ2t
]

and Zn(h) ≡ 1/
√
n
∑n

t=1+h zt(h).

Lemma A.4. Let Assumptions 1 and 2 hold, and write Zn(h) ≡ 1/
√
n
∑n

t=1+h zt(h). For each L ∈ N :

{Zn(h) : 1 ≤ h ≤ L} d→ {Z(h) : 1 ≤ h ≤ L}, where {Z(h) : 1 ≤ h ≤ L} is a zero mean Gaussian process

with variance limn→∞ n−1
∑n

s,t=1E[zs(h)zt(h)] ∈ (0,∞), and covariance function

limn→∞ n−1
∑n

s,t=1E[zs(h)zt(h̃)].

Proof of Lemma 2.1. Assumption 1.c states ω̂n(h)
p→ ω(h). Property (A.1) applies to rt(h) −

ρ(h)rt(0) under Assumptions 1 and 2, cf. Theorem 17.8 in Davidson (1994), hence 1/
√
n
∑n

t=1+h{rt(h)
− ρ(h)rt(0)} = Op(1). Now use Lemma A.3 and the triangle inequality to yield:

X̃n(h) ≡
∣∣∣√nω̂n(h) {ρ̂n(h)− ρ(h)} − ω(h)n−1/2

∑n

t=1+h
{rt(h)− ρ(h)rt(0)}

∣∣∣ (A.4)

≤ |ω(h)| × Xn(h) + |ω̂n(h)− ω(h)| × Xn(h)

+ |ω̂n(h)− ω(h)| ×
∣∣∣n−1/2

∑n

t=1+h
{rt(h)− ρ(h)rt(0)}

∣∣∣ p→ 0.

The claims now follow by applications of Lemma A.2 to X̃n(h). QED.

Proof of Lemma 2.2. Since ω(h) > 0 are finite, we set ω(h) = 1 without loss of generality.

Step 1. By Step 2, for each h:

Zn(h)− Z̃(h)
p→ 0 (A.5)

where {Z̃(h) : 1 ≤ h ≤ L} is a copy of the Lemma A.4 zero mean Gaussian process {Z(h) : 1 ≤ h ≤ L}.
Apply Lemma A.2 to Zn(h) − Z̃(h) to yield the desired result.

Step 2. We now prove (A.5). Lemma A.4 implies Zn(h)
d→ Z(h) for each h, where {Z(h) : 1 ≤ h

≤ L} is a zero mean Gaussian process. Therefore E[exp{iλZn(h)}] − E[exp{iλZ̃(h)}] → 0 for all λ ∈
R, where i =

√
−1 and {Z̃(h) : 1 ≤ h ≤ L} is a copy of {Z(h) : 1 ≤ h ≤ L}. This follows because

convergence in distribution holds if and only if there is convergence in characteristic functions by the

portmanteau theorem (e.g. Billingsley, 1995, Theorem 26.3). Now factor out E[exp{iλZ̃(h)}] to yield:

E
[
exp

{
iλZ̃(h)

}]
×
{
E
[
exp

{
iλ
(
Zn(h)− Z̃(h)

)}]
− 1
}
→ 0. (A.6)

But Z̃(h) is Gaussian with zero mean and variance v(h)2 ∈ (0,∞) in view of Lemma A.4, hence

E[exp{iλZ̃(h)}] = E[exp{−(1/2)λ2/v(h)2}] ∈ (0,∞) for each λ ∈ R. From (A.6) it therefore follows

that E[exp{iλ(Zn(h) − Z̃(h))}] → 1 for each λ ∈ R. Thus, the characteristic function of Zn(h) − Z̃(h)
converges to one everywhere on R. But that is only possible if Zn(h) − Z̃(h)

d→ 0 by uniqueness of the

characteristic function (Billingsley, 1995, Theorem 26.2). Therefore Zn(h) − Z̃(h)
p→ 0 by application of

Theorem 25.3 in Billingsley (1995). This proves (A.5) which completes the proof. QED.
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The proof of Theorem 2.5 requires the following uniform laws and probability bound, and weak

convergence for the bootstrapped p-value. The first result is rudimentary and therefore proved in

Hill and Motegi (2018, Appendix F). Recall mt are the Assumption 2.c estimating equations.

Lemma A.5. Under Assumptions 1 and 2.a,b,c′,d supθ∈Θ ||1/n
∑n

t=1 ωt(∂/∂θ)mt(θ)||
p→ 0,

supθ∈Θ ||1/n
∑n

t=1(∂/∂θ)mt(θ) − E[(∂/∂θ)mt(θ)]||
p→ 0, and 1/

√
n
∑n

t=1+h ωtmt = Op(1).

Let ⇒p denote weak convergence in probability on l∞ (the space of bounded functions) as defined

in Giné and Zinn (1990, Section 3). Recall by Lemma 2.2 that |ϑ([Zn(h)]
Ln
h=1) − ϑ([Z(h)]Ln

h=1)|
p→ 0 for

some zero mean Gaussian process {Z(h) : h ∈ N} with variance limn→∞ n−1
∑n

s,t=1E[zs(h)zt(h)] < ∞.

Define the sample:

Xn ≡ {mt, xt, yt}nt=1 .

Lemma A.6. Let Assumptions 1 and 2.a,b,c′,d hold.

a. For each L ∈ N, {
√
nρ̂

(dw)
n (h) : 1 ≤ h ≤ L} ⇒p {Z̊(h) : 1 ≤ h ≤ L}, where {Z̊(h) : h ∈ N} is an

independent copy of {Z(h) : h ∈ N}.

b. For some sequence of positive integers {Ln}, Ln → ∞ and Ln = o(n):

sup
c>0

∣∣∣∣P (ϑ([ω̂n(h)
√
nρ̂(dw)

n (h)
]Ln

h=1

)
≤ c|Xn

)
− P

(
ϑ

([
ω(h)Z̊(h)

]Ln

h=1

)
≤ c
)∣∣∣∣ p→ 0.

Proof.

Claim (a). Let {φt}nt=1 be a draw of the auxiliary variables, and write

ρ∗n(h) ≡
1

E
[
ϵ2t
] 1
n

n∑
t=1+h

φt {Et,h − E [E1,h]} where Et,h ≡ ϵtϵt−h −D(h)′Amt. (A.7)

Recall Ên,t,h(θ̂n) ≡ ϵt(θ̂n)ϵt−h(θ̂n) − D̂n(h)
′Ânmt(θ̂n), and:

ρ̂(dw)
n (h) ≡ 1

1/n
∑n

t=1 ϵ
2
t (θ̂n)

1

n

n∑
t=1+h

φt

{
Ên,t,h(θ̂n)−

1

n

n∑
s=1+h

Ên,s,h(θ̂n)

}
.

Let {Z(h) : h ∈ N} be the Lemma 2.2 Gaussian process. It suffices to show:

{√
nρ∗n(h) : 1 ≤ h ≤ L

}
⇒p

{
Z̊(h) : 1 ≤ h ≤ L

}
(A.8)

√
n
∣∣∣ρ̂(dw)

n (h)− ρ∗n(h)
∣∣∣ p→ 0 for each h, (A.9)

where {Z̊(h) : h ∈ N} is an independent copy of {Z(h) : h ∈ N}. We shorten the proof by letting

{ξ1, . . . , ξn/bn} be iid N(0, 1) random variables. The general case is similar, where ξi are iid, E[ξi] = 0,

E[ξ2i ] = 1 and E[ξ4i ] < ∞, except statements about conditional distribution normality must be replaced

with added steps to show asymptotic convergence in conditional distribution.
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Step 1. Consider (A.8). Define L ≡ {1, ...,L}. It suffices to prove weak convergence on a Polish

space in the sense of Hoffmann-Jørgensen (1984, 1991), cf. Giné and Zinn (1990, p. 853 and Theorem

3.1.a). The latter holds if and only if there exists a pseudo metric d on L such that (L, d) is a totally

bounded pseudo metric space; {
√
nρ∗n(h) : 1 ≤ h ≤ L} d→ {Z̊(h) : 1 ≤ h ≤ L}; and the sequence of

distributions governing {
√
nρ∗n(h)}n≥1 are stochastically equicontinuous on L. L is compact, so pick the

sup-norm d. Stochastic equicontinuity is trivial because L is discrete and bounded. It now suffices to

prove convergence in finite dimensional distributions. We follow an argument given in Hansen (1996,

proof of Theorem 2).

By construction of φt via ξt:

ρ∗n(h) =
1

E
[
ϵ2t
] 1

n/bn

n/bn∑
s=1

ξs
1

bn

sbn∑
t=(s−1)bn+1+h

{Et,h − E [E1,h]} =
1

E
[
ϵ2t
] 1

n/bn

n/bn∑
s=1

ξs
1

bn
En,h,

say, where En,h ≡
∑sbn

t=(s−1)bn+1+h{Et,h − E [E1,h]}. Operate conditionally on Xn ≡ {mt, xt, yt}nt=1,

and write EXn [·] ≡ E[·|Xn]. By joint Gaussianicity and independence of ξs, {
√
nρ∗n(h) : 1 ≤ h ≤

L} is for each L ∈ N a zero mean Gaussian process with covariance function nEXn [ρ
∗
n(h)ρ

∗
n(h̃)] =

1/n
∑n/bn

s=1 En,hEn,h̃/(E[ϵ2t ])
2. Observe:

lim
n→∞

E
[
nEXn

[
ρ∗n(h)ρ

∗
n(h̃)

]]
(A.10)

=
1[

E
[
ϵ2t
]]2 lim

n→∞

1

n

n/bn∑
s=1

sbn∑
t,u=(s−1)bn+1+h

E
[
{Et,h − E [E1,h]}

{
Eu,h̃ − E

[
E1,h̃

]}]

=
1[

E
[
ϵ2t
]]2 ∞∑

i=0

E
[
{E1,h − E [E1,h]}

{
E1+i,h̃ − E

[
E1,h̃

]}]

= lim
n→∞

1

n
E

 n∑
t=1

(Et,h − E [Et,h])
E
[
ϵ2t
] n∑

t=1

(
Et,h̃ − E

[
Et,h̃
])

E
[
ϵ2t
]

 = E
[
Z(h)Z(h̃)

]
.

The final equality follows directly from the definition of Z(h) in Lemma 2.2.

Let X be the set of samples Xn such that nEXn [ρ
∗
n(h)ρ

∗
n(h̃)]

p→ limn→∞E[nEXn [ρ
∗
n(h)ρ

∗
n(h̃)]] =

E[Z(h)Z(h̃)]. We will prove:

P (Xn ∈ X) = 1. (A.11)

In conjunction with (A.10), it then follows that the finite dimensional distributions of {
√
nρ∗n(h) : 1 ≤ h

≤ L} converge to those of {Z̊(h) : 1 ≤ h ≤ L}, where {Z̊(h) : 1 ≤ h ≤ L} is a zero mean Gaussian process

with covariance function E[Z(h)Z(h̃)]. Independence of ξs with respect to the sample Xn, Gaussianicity,

and the fact that Gaussian processes are completely determined by their mean and covariance structure,

together imply {Z̊(h) : 1 ≤ h ≤ L} is an independent copy of {Z(h) : 1 ≤ h ≤ L}.
Consider (A.11). The following exploits arguments presented in de Jong (1997, Appendix). Let {ln}
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be any sequence of integers ln ∈ {1, ..., bn} such that ln → ∞ and ln = o(bn). Define:

Yn,s(h) ≡
sbn∑

t=(s−1)bn+ln+1

{Et,h − E [E1,h]} , Un,s(h) ≡
(s−1)bn+ln∑
t=(s−1)bn+1

{Et,h − E [E1,h]} , R(h) ≡ −
h∑

t=1

{Et,h − E[E1,h]}.

By construction
∑sbn

t=(s−1)bn+1+h{Et,h − E[E1,h]} = Yn,s(h) + Un,s(h) + R(h), hence

1

n

n/bn∑
s=1

En,hEn,h̃ =
1

n

n/bn∑
s=1

Yn,s(h)Yn,s(h̃) +
1

n

n/bn∑
s=1

Un,s(h)Un,s(h̃) +
1

bn
R(h)R(h̃)

+
1

n

n/bn∑
s=1

Yn,s(h)Un,s(h̃) +
1

n

n/bn∑
s=1

Yn,s(h̃)Un,s(h) +
1

n

n/bn∑
s=1

Yn,s(h)R(h̃)

+
1

n

n/bn∑
s=1

Yn,s(h̃)R(h) +
1

n

n/bn∑
s=1

Un,s(h)R(h̃) +
1

n

n/bn∑
s=1

Un,s(h̃)R(h).

We will prove all terms are op(1) save 1/n
∑n/bn

s=1 Yn,s(h)Yn,s(h̃) hence:

1

n

n/bn∑
s=1

En,hEn,h̃ =
1

n

n/bn∑
s=1

Yn,s(h)Yn,s(h̃) + op(1). (A.12)

First, under Assumptions 1 and 2, Et,h is stationary, ergodic and L2-bounded. Therefore ||R(h̃)||2 ≤∑h̃
t=1 ||Et,h − E[E1,h]||2 ≤ K for each finte h̃, hence by the Cauchy-Schwartz inequality E|b−1

n R(h)R(h̃)|
≤ K/bn → 0.

Second, the NED and moment properties of ϵt and mt in Assumptions 1 and 2 imply Et,h ≡ ϵtϵt−h

− D(h)′Amt is Lp-bounded, p > 2, L2-NED on an α-mixing base with decay O(h−p/(p−2)). Therefore

||1/
√
bnYn,1(h)||2 and ||1/

√
lnUn,1(h̃)||2 are O(1) by (A.1). Multiply and divide Yn,s(h) and Un,s(h̃) by

bn and ln respectively, and use stationarity, Minkowski and Cauchy-Schwartz inequalities, and ln/bn =

o(1) to yield∥∥∥∥∥∥ 1n
n/bn∑
s=1

Yn,s(h)Un,s(h̃)

∥∥∥∥∥∥
1

= O

((
ln
bn

)1/2 ∥∥∥∥ 1√
bn
Yn,1(h)

∥∥∥∥
2

∥∥∥∥ 1√
ln
Un,1(h̃)

∥∥∥∥
2

)
= O

(
(ln/bn)

1/2
)
= o(1)

∥∥∥∥∥∥ 1n
n/bn∑
s=1

Yn,s(h)Rn(h̃)

∥∥∥∥∥∥
1

= O

(∥∥∥∥ 1√
bn
Yn,1(h)

∥∥∥∥
2

∥∥∥∥ 1√
bn
Rn(h̃)

∥∥∥∥
2

)
= o(1)

∥∥∥∥∥∥ 1n
n/bn∑
s=1

Un,s(h)Un,s(h̃)

∥∥∥∥∥∥
1

= O

(
ln
bn

∥∥∥∥ 1√
ln
Un,1(h)

∥∥∥∥
2

∥∥∥∥ 1√
ln
Un,1(h̃)

∥∥∥∥
2

)
= o(1)

∥∥∥∥∥∥ 1n
n/bn∑
s=1

Un,s(h)Rn(h̃)

∥∥∥∥∥∥
1

= O

((
ln
bn

)1/2 ∥∥∥∥ 1√
ln
Un,1(h)

∥∥∥∥
2

)
= o(1).
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This proves (A.12).

Next, de Jong’s (1997: Assumption 2) conditions are satisfied under the given NED property.

Hence, by the proof of de Jong’s (1997) Theorem 2: 1/n
∑n/bn

s=1 Y2
n,s(h)

p→ limn→∞ n−1E[(
∑n

t=1{Et,h
− E[E1,h]})2]. An identical argument can be used to prove that the product Yn,s(h)Yn,s(h̃) satisfies:

1

n

n/bn∑
s=1

Yn,s(h)Yn,s(h̃)
p→ lim

n→∞

1

n
E

[(
n∑

t=1

{Et,h − E [E1,h]}

)(
n∑

t=1

{
Et,h̃ − E

[
E1,h̃

]})]
. (A.13)

Property (A.11) is proved since combining (A.10), (A.12) and (A.13) yields

nEXn

[
ρ∗n(h)ρ

∗
n(h̃)

]
p→ lim

n→∞
E
[
nEXn

[
ρ∗n(h)ρ

∗
n(h̃)

]]
= E

[
Z(h)Z(h̃)

]
.

Step 2. Now turn to (A.9).

Step 2.1 Recall Et,h ≡ ϵtϵt−h − D(h)′Amt and Ên,t,h(θ̂n) ≡ ϵt(θ̂n)ϵt−h(θ̂n) − D̂n(h)
′Ânmt(θ̂n).

We will prove in Step 2.2 that:

1√
n

n∑
t=1+h

φt

{
Ên,t,h(θ̂n)−

1

n

n∑
s=1+h

Ên,s,h(θ̂n)

}
=

1√
n

n∑
t=1+h

φt {Et,h − E [Et,h]}+ op(1) (A.14)

by showing (it is straightforward to show (A.15)-(A.18) imply (A.14)):

n−1/2
∑n

t=1+h
φtϵt(θ̂n)ϵt−h(θ̂n) = n−1/2

∑n

t=1+h
φtϵtϵt−h + op(1) (A.15)

D̂n(h)
′Ânn

−1/2
∑n

t=1+h
φtmt(θ̂n) = D(h)′An−1/2

∑n

t=1+h
φtmt + op(1) (A.16)

n−1/2
∑n

t=1+h
φtn

−1
∑n

s=1+h
ϵs(θ̂n)ϵs−h(θ̂n) = n−1/2

∑n

t=1+h
φtE [ϵtϵt−h] + op(1) (A.17)

n−1/2
∑n

t=1+h
φtD̂n(h)

′Ânn
−1
∑n

t=1+h
mt(θ̂n) = op(1). (A.18)

By the construction of φt, for iid ξs distributed N(0, 1):

E

( 1√
n

n∑
t=1+h

φt {Et,h − E [Et,h]}

)2
 = E

 1√
n

n/bn∑
s=1

ξs

sbn∑
t=(s−1)bn+1

φt {Et,h − E [Et,h]}

2
= E

( 1√
bn

bn∑
t=1

{Et,h − E [Et,h]}

)2
 .

Under Assumptions 1.b and 2.c′, (A.1) applies to Et,h − E[Et,h] (Davidson, 1994, Theorems 17.8 and

17.9). Hence E[(1/
√
bn
∑bn

t=1{Et,h − E [Et,h]})2] = O(1), and therefore:

n−1/2
∑n

t=1+h
φt {Et,h − E [Et,h]} = Op(1). (A.19)
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Further, by application of Lemma A.3,
√
n{γ̂n(0) − γ(0)} = n−1/2

∑n
t=1{ϵ2t − E[ϵ2t ] − D(0)′Amt} +

Op(1/
√
n). Coupled with stationarity, ergodicity and square integrability yields:

n−1
∑n

t=1
ϵ2t (θ̂n) = E

[
ϵ2t
]
+ op(1). (A.20)

Combine (A.14), (A.19) and (A.20) to yield (A.9) as required:

√
nρ̂(dw)

n (h) =
1

1/n
∑n

t=1 ϵ
2
t (θ̂n)

1√
n

n∑
t=1+h

φt {Et,h − E [Et,h]}+ op(1) =
1

E [ϵ2t ]

1√
n

n∑
t=1+h

φt {Et,h − E [Et,h]}+ op(1)

Step 2.2 We now prove (A.15)-(A.18). Consider (A.15). Since φt is zero mean Gaussian and

independent of the sample, the proof of Lemma 2.1 carries over verbatim to show:

1√
n

n∑
t=1+h

φtϵt(θ̂n)ϵt−h(θ̂n) =
1√
n

n∑
t=1+h

φtϵtϵt−h −
√
n
(
θ̂n − θ0

)′ 1
n

n∑
t=1+h

φt (ϵtst +Gt/σt) ϵt−h

−
√
n
(
θ̂n − θ0

)′ 1
n

n∑
t=1+h

φtϵt

(
ϵt−hst−h +

Gt−h

σt−h

)
+ op(1). (A.21)

By the stated moment bounds and the construction of φt we have:

n−1
∑n

t=1+h
φt (ϵtst +Gt/σt) ϵt−h = n−1

∑n

t=1
φt (ϵtst +Gt/σt) ϵt−h + op(1)

= n−1
∑n/bn

s=1
ξs
∑sbn

t=(s−1)bn+1
(ϵtst +Gt/σt) ϵt−h + op(1).

Stationarity, independence of ξs, and E[(ϵtst + Gt/σt)
2ϵ2t−h] <∞ under Assumptions 1.b and 2.a,b yield:

E

 1

n

n/bn∑
s=1

ξs


sbn∑

t=(s−1)bn+1+h

(
ϵtst +

Gt

σt

)
ϵt−h


2 =

bn
n
E

{ 1

bn

bn∑
t=1

(
ϵtst +

Gt

σt

)
ϵt−h

}2


≤ bn
n

(∥∥∥∥(ϵtst + Gt

σt

)
ϵt−h

∥∥∥∥
2

)2

= o(1).

Hence 1/n
∑n

t=1+h φt(ϵtst + Gt/σt)ϵt−h
p→ 0. Combining that with

√
n(θ̂n − θ0) = Op(1) and (A.21)

yields (A.15).

Next, (A.16). By Lemma A.5:

sup
θ∈Θ

∥∥∥∥∥ 1n
n∑

t=1

φt
∂

∂θ
mt(θ)

∥∥∥∥∥ p→ 0 and
1√
n

n∑
t=1+h

φtmt = Op(1). (A.22)
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Now write:

D̂n(h)
′Ân

1√
n

n∑
t=1+h

φtmt(θ̂n) = D(h)′A 1√
n

n∑
t=1+h

φtmt +D(h)′A
1√
n

n∑
t=1+h

φt

{
mt(θ̂n)−mt

}
+
{
D̂n(h)

′Ân −D(h)′A
} 1√

n

n∑
t=1+h

φtmt

+
{
D̂n(h)

′Ân −D(h)′A
} 1√

n

n∑
t=1+h

φt

{
mt(θ̂n)−mt

}
.

Note that D̂n(h)
p→ D(h) by arguments in the proof of Lemma 2.1, and by supposition Ân

p→ A.
Moreover, by a mean value theorem argument, Assumption 2.c′, and (A.22):

∥∥∥n−1/2
∑n

t=1+h
φt

{
mt(θ̂n)−mt

}∥∥∥ ≤ √n ∥∥∥θ̂n − θ0∥∥∥× sup
θ∈Θ

∥∥∥∥n−1
∑n

t=1+h
φt

∂

∂θ
mt(θ)

∥∥∥∥ p→ 0.

The latter convergence in probability, combined with (A.22), suffice to prove (A.16).

Proceeding to (A.17), first note that

n−1/2
∑n

t=1
φt = bnn

−/12
∑n/bn

s=1
ξs =

√
bn (n/bn)

−1/2
∑n/bn

s=1
ξs = Op

(√
bn

)
. (A.23)

Second, by equation (F.5) in the proof of Lemma A.3 in Hill and Motegi (2018):∣∣∣∣√nγ̂n(h)− n−1/2
∑n

t=1+h
ϵtϵt−h +

√
n
(
θ̂n − θ0

)′
D(h)

∣∣∣∣ p→ 0. (A.24)

Use (A.24), and θ̂n = θ0 + Op(1/
√
n) to deduce 1/n

∑n
s=1+h ϵs(θ̂n)ϵs−h(θ̂n) = 1/n

∑n
t=1+h ϵtϵt−h +

Op(1/
√
n). Therefore

n−1/2
∑n

t=1+h
φtn

−1
∑n

s=1+h
ϵs(θ̂n)ϵs−h(θ̂n) = n−1/2

∑n

t=1+h
φtn

−1
∑n

t=1+h
ϵtϵt−h +Op

(
1/
√
n/bn

)
.

It remains to show

n−1/2
∑n

t=1+h
φtn

−1
∑n

t=1+h
ϵtϵt−h = n−1/2

∑n

t=1+h
φtE [ϵtϵt−h] + op(1). (A.25)

Under Assumptions 1.b, ϵtϵt−h − E[ϵtϵt−h] satisfies (A.1), hence E[(1/
√
n
∑n

t=1{ϵtϵt−h − E [ϵtϵt−h]})2]
= O(1). Further 1/

√
n
∑n

t=1+h φt = Op(
√
bn) from (A.23). Hence

n−1/2
∑n

t=1+h
φtn

−1
∑n

t=1+h
{ϵtϵt−h − E [ϵtϵt−h]} = n−1/2

∑n

t=1+h
φt ×Op(1/

√
n) = Op

(
1/
√
n/bn

)
.

Since bn/n → 0, (A.25) follows directly.

Finally, for (A.18), since 1/
√
n
∑n

t=1+h φt = Op(
√
bn) and D̂n(h)

′Ân
p→ D(h)′A we need only show
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1/n
∑n

t=1mt(θ̂n) = op(1/
√
bn). A first order expansion and the mean value theorem yield:

∥∥∥n−1
∑n

t=1+h
mt(θ̂n)− n−1

∑n

t=1+h
mt

∥∥∥ ≤ sup
θ∈Θ

∥∥∥∥n−1
∑n

t=1+h

∂

∂θ
mt(θ

∗
n)

∥∥∥∥∥∥∥θ̂n − θ0∥∥∥ .
By Lemma A.5: supθ∈Θ ||1/n

∑n
t=1(∂/∂θ)mt(θ) − E[(∂/∂θ)mt(θ)]||

p→ 0, and supθ∈Θ ||E[(∂/∂θ)mt(θ)]||
< ∞ and θ̂n − θ0 = Op(1/

√
n) under Assumption 2.c′. Moreover, by Assumption 2.c′, mt = [mi,t]

km
i=1

satisfies (A.1), hence E[(1/
√
n
∑n

t=1m
2
i,t] = O(1). This yields 1/n

∑n
t=1+hmt(θ̂n) = 1/n

∑n
t=1+hmt +

Op(1/
√
n) = Op(1/

√
n). Since bn = o(n) the proof is complete.

Claim (b). Weak convergence in probability Claim (a), the mapping theorem and Slutsky’s theorem

yield for each L ∈ N:

ϑ

([√
nω̂n(h)ρ̂

(dw)
n (h)

]L
h=1

)
⇒p ϑ

([
ω(h)Z̊(h)

]L
h=1

)
. (A.26)

Therefore (see, e.g., Giné and Zinn, 1990, eq. (3.4)):

AL,n ≡ sup
c>0

∣∣∣∣P (ϑ([√nω̂n(h)ρ̂
(dw)
n (h)

]L
h=1

)
≤ c|Xn

)
− P

(
ϑ

([
ω(h)Z̊(h)

]L
h=1

)
≤ c
)∣∣∣∣→ 0.

Now apply arguments used to prove Lemma A.2.a in order to yield ALn,n
p→ 0 for some sequence of

positive integers {Ln}n≥1, Ln → ∞ and Ln = o(n). QED.

Proof of Theorem 2.5. Assume the weights ω̂n(h) = 1 to conserve notation, without loss of

generality. Operate conditionally on Xn ≡ {mt, xt, yt}nt=1, and recall p̂
(dw)
n,M ≡ 1/M

∑M
i=1 I(T̂

(dw)
n,i ≥ T̂n).

First, by the Glivenko-Cantelli theorem:

p̂
(dw)
n,M

p→ P

(
ϑ

([√
nρ̂(dw)

n (h)
]Ln

h=1

)
≥ ϑ

([√
nρ̂n(h)

]Ln

h=1

)
|Xn

)
as M →∞. (A.27)

Second, by Theorem 2.3 and Lemma A.6:∣∣∣ϑ([√n {ρ̂n(h)− ρ(h)}]Ln

h=1

)
− ϑ

(
[Z(h)]Ln

h=1

)∣∣∣ p→ 0 (A.28)

sup
c>0

∣∣∣∣P (ϑ([√nρ̂(dw)
n (h)

]Ln

h=1

)
≤ c|Xn

)
− P

(
ϑ

([
Z̊(h)

]Ln

h=1

)
≤ c
)∣∣∣∣ p→ 0, (A.29)

where {Z(h) : h ∈ N} is a zero mean Gaussian process with variance E[Z(h)2] < ∞, and {Z̊(h) : h ∈
N} is an independent copy of {Z(h) : h ∈ N}.

Impose H0 : ρ(h) = 0 ∀h ∈ N. Define F̄
(0)
n (c) ≡ P (ϑ([Z̊(h)]Ln

h=1) > c). Note that (A.29) implies:

P

(
ϑ

([√
nρ̂(dw)

n (h)
]Ln

h=1

)
≥ ϑ

([√
nρ̂n(h)

]Ln

h=1

)
|Xn

)
− P

(
ϑ

([
Z̊(h)

]Ln

h=1

)
≥ ϑ

([√
nρ̂n(h)

]Ln

h=1

))
p→ 0.
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Since [Z̊(h)]Ln
h=1 is independent of the sample Xn, we therefore have:

P

(
ϑ

([√
nρ̂(dw)

n (h)
]Ln

h=1

)
≥ ϑ

([√
nρ̂n(h)

]Ln

h=1

)
|Xn

)
− F̄ (0)

n

(
ϑ
([√

nρ̂n(h)
]Ln

h=1

))
p→ 0. (A.30)

F̄
(0)
n is continuous by Gaussianicity. Theorem 2.3 and Slutsky’s theorem therefore yield:∣∣∣F̄ (0)

n

(
ϑ
([√

nρ̂n(h)
]Ln

h=1

))
− F̄ (0)

n

(
ϑ
(
[Z(h)]Ln

h=1

))∣∣∣ p→ 0. (A.31)

Together, (A.27), (A.30) and (A.31) yield for any sequence of positive integers {Mn}, Mn → ∞:

p̂
(dw)
n,Mn

= P

(
ϑ

([√
nρ̂(dw)

n (h)
]Ln

h=1

)
≥ ϑ

([√
nρ̂n(h)

]Ln

h=1

)
|Xn

)
+ op(1) (A.32)

= F̄ (0)
n

(
ϑ
(
[Z(h)]Ln

h=1

))
+ op(1).

Since{Z̊(h) : h ∈ N} is an independent copy of {Z(h) : h ∈ N}, F̄ (0)
n (ϑ([Z(h)]Ln

h=1)) is distributed uniform

on [0, 1]. Now use (A.32) to conclude P (p̂
(dw)
n,Mn

< α) = P (F̄
(0)
n

(
(ϑ [Z(h)]Ln

h=1)
)
< α) + o(1) = α + o(1)

→ α.

Impose H1 : ρ(h) ̸= 0 for some h ∈ N. Recall ϑ satisfies the triangle inequality, and divergence

ϑ(a) → ∞ as ||a|| → ∞. Theorem 2.3 therefore yields: ϑ([
√
nρ̂n(h)]

Ln
h=1) ≤ ϑ([

√
n{ρ̂n(h) − ρ(h)}]Ln

h=1)

+ ϑ([
√
nρ(h)]Ln

h=1) = ϑ([Z(h)]Ln
h=1) + ϑ([

√
nρ(h)]Ln

h=1) + op(1), and ϑ([
√
nρ(h)]Ln

h=1) ≤ ϑ([
√
n{ρ̂n(h) −

ρ(h)}]Ln
h=1) + ϑ([

√
nρ̂n(h)]

Ln
h=1) = ϑ([Z(h)]Ln

h=1) + ϑ([
√
nρ̂n(h)]

Ln
h=1) + op(1)

p→ ∞, hence

∞ p← ϑ
(
[Z(h)]Ln

h=1

)
+ ϑ

([√
nρ(h)

]Ln

h=1

)
+ op(1) ≥ ϑ

([√
nρ̂n(h)

]Ln

h=1

)
(A.33)

≥ ϑ
([√

nρ(h)
]Ln

h=1

)
− ϑ

(
[Z(h)]Ln

h=1

)
+ op(1)

p→∞.

Combine (A.27), (A.29) and (A.33) to deduce P (p̂
(dw)
n,Mn

< α) → 1 for any α ∈ (0, 1) because:

p̂
(dw)
n,Mn

= P

(
ϑ

([√
nρ̂(dw)

n (h)
]Ln

h=1

)
≥ ϑ

([√
nρ̂n(h)

]Ln

h=1

)
|Xn

)
+ op(1)

= P

(
ϑ

([
Z̊(h)

]Ln

h=1

)
≥ ϑ

([√
nρ̂n(h)

]Ln

h=1

))
+ op(1) = F̄ (0)

n

(
ϑ
([√

nρ̂n(h)
]Ln

h=1

))
+ op(1)

p→ 0. QED.

Proof of Theorem 3.1. Let q be any fixed positive constant. Recall Pn(L) =
√
L lnn if T̂n(L) ≤√

q lnn, else Pn(L) =
√
2L.

Claim (a). Let H0 be true. It suffices to prove the following. First, for any {Ln}, Ln → (0,∞] and

Ln/L̄n → [0, 1], the the penalty term satisfies:

P
(
Pn(Ln) =

√
Ln ln(n)

)
→ 1. (A.34)

Hence T̂ P
n (L) ≡ T̂n(L) −

√
L lnn asymptotically with probability approaching one. Second, for such
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{Ln} the following holds:

P
(
T̂n(Ln)− T̂n(l) ≥

(√
Ln −

√
l
)√

ln(n)
)
→ 1 if l ≥ Ln (A.35)

P
(
T̂n(Ln)− T̂n(l) ≥

(√
Ln −

√
l
)√

ln(n)
)
→ 0 for fixed l = 1, ...,Ln − 1.

Together (A.34) and (A.35) prove the claim since the following holds for every l = 1, ..., L̄ if and only if

Ln → 1:

lim
n→∞

P
(
T̂ P
n (Ln) ≥ T̂ P

n (l)
)
= lim

n→∞
P
(
T̂n(Ln)− T̂n(l) ≥

(√
Ln −

√
l
)√

ln(n)
)
= 1.

Consider (A.34). By construction of Pn(Ln) it suffices to prove P (T̂n(Ln) >
√
q lnn)→ 0. Under H0,√

nρ̂n(h) = Op(1) by (A.4) and (A.5), hence
√
nρ̂n(h)/

√
q lnn

p→ 0 for any fixed q ∈ (0,∞). Therefore,

for any integer sequence {L̄n}, L̄n → (0,∞), or by Lemma A.2 for some {L̄n}, {L̄n} → ∞:

T̂n(L̄n)√
q lnn

=

√
nmax1≤h≤L̄n

|ρ̂n(h)|√
q lnn

p→ 0. (A.36)

By monotonicity of T̂n(·), (A.36) holds for any {Ln}, Ln→ (0,∞] and Ln/L̄n→ [0, 1]. Thus T̂n(Ln)/
√
q lnn

p→ 0 for all such {Ln}.
Now consider (A.35). Suppose l > Ln. By (A.36), T̂n(L̄n)/

√
lnn = op(1) and therefore T̂n(Ln) −

T̂n(l) = op(
√

ln(n)) for any {Ln}, Ln → (0,∞] and Ln/L̄n → [0, 1], and any 1 ≤ l ≤ L̄n. Now use

(A.34), monotonicity of T̂n(·), and infn≥1{
√
l −
√
Ln} > 0, to yield as n → ∞:

P
(
T̂n(Ln)− T̂n(l) ≥

(√
Ln −

√
l
)√

ln(n)
)

= P

(
T̂n(Ln)− T̂n(l)√

ln(n)
≥
√
Ln −

√
l

)

= P

(
√
l −
√
Ln ≥

T̂n(l)− T̂n(Ln)√
ln(n)

)
→ 1.

Similarly, if l = Ln then
√
l −
√
Ln = 0 and T̂n(l) − T̂n(Ln) = 0 hence the above limit holds.

Conversely, suppose l ∈ {1, ...,Ln − 1} and Ln > 1. Then from T̂n(Ln) = op(
√
q lnn) and 1 −√

l/Ln > 0 it follows

P
(
T̂n(Ln)− T̂n(l) ≥

(√
Ln −

√
l
)√

ln(n)
)
= P

(
T̂n(Ln)− T̂n(l)√
Ln
√

ln(n)
≥

(
1−

√
l

Ln

))
→ 0.

Claim (A.35) follows directly.

Claim (b). Let H1 hold. Let ap1 denote asymptotically with probability approaching one. Define

h∗n ≡ min{hn : hn = argmax1≤h≤L̄n
|ρ̂n(h)|}, the smallest lag at which the largest sample correlation in

magnitude over lags 1 ≤ h ≤ L̄n occurs.

Define N1 ≡ {h ∈ N : E[ϵtϵt−h] ̸= 0} and N
¯ 1 ≡ min{N1}, the smallest lag at which the autocorrelation
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is not zero. We prove in Step 1 that for any integer sequence {Ln} such that Ln → [N
¯ 1,∞] and Ln/L̄n

→ [0, 1]:

P
(
Pn(Ln) =

√
2Ln

)
→ 1. (A.37)

We then prove in Step 2 that if and only if Ln/h∗n
p→ [1,∞]:

P
(
T̂n(Ln) ≥ T̂n(l) + 2(

√
Ln −

√
l)
)
→ 1 for each 1 ≤ l ≤ L̄n. (A.38)

Moreover, h∗n
p→ h∗ ≡ min{h : h = argmax1≤h≤∞ |ρ(h)|} is an easy consequence of L̄n →∞, consistency

of the sample correlation under the stated assumptoins, and Slutsky’s theorem. Notice h∗ ∈ [N
¯ 1,∞) by

construction of N
¯ 1.

The proof of the claim then proceeds as follows. Take any integer sequence {Ln}, Ln/h∗n
p→ [1,∞]

and Ln/L̄n → [0, 1]. Then (A.37) holds because h∗ ∈ [N
¯ 1,∞), hence T̂ P

n (Ln) ≡ T̂n(L.) −
√
2Ln ap1.

Since such a sequence implies (A.38), we have T̂ P
n (Ln) ≥ T̂ P

n (l) ap1 for each l = 1, ..., L̄n. Conversely, if
(A.38) holds then Ln/h∗n

p→ [1,∞]. This yields (A.37) because h∗ ∈ [N
¯ 1,∞). Therefore T̂ P

n (Ln) ≥ T̂ P
n (l)

ap1 for each l = 1, ..., L̄n if and only if Ln/h∗n
p→ [1,∞]. Since the optimal {L∗n} is the least of such

sequences, the selection L∗n satisfies Ln/h∗n
p→ 1. Together Ln/h∗n

p→ 1 and h∗n
p→ h∗ prove the claim.

Step 1: Consider (A.37). Use (A.4) and (A.5) to deduce ρ̂n(h) − ρ(h)
p→ 0 for each h. Lemma

A.2 therefore yields for some integer sequence {L̄n}, L̄n → ∞:∣∣∣∣ max
1≤h≤L̄n

|ρ̂n(h)| − max
1≤h≤L̄n

|ρ(h)|
∣∣∣∣ ≤ ∣∣∣∣ max

1≤h≤L̄n

|ρ̂n(h)− ρ(h)|
∣∣∣∣ p→ 0,

where limn→∞max1≤h≤L̄n
|ρ(h)| ∈ (0,∞). By monotonicity, for any {Ln}, Ln → (0,∞] and Ln/L̄n →

[0, 1], and sufficiently large n:∣∣∣∣ max
1≤h≤Ln

|ρ̂n(h)| − max
1≤h≤Ln

|ρ(h)|
∣∣∣∣ ≤ ∣∣∣∣ max

1≤h≤Ln

|ρ̂n(h)− ρ(h)|
∣∣∣∣ ≤ ∣∣∣∣ max

1≤h≤L̄n

|ρ̂n(h)− ρ(h)|
∣∣∣∣ p→ 0.

Therefore for any {Ln}, Ln → [N
¯ 1,∞] and Ln/L̄n → [0, 1]:

T̂n(Ln)√
q lnn

=

√
nmax1≤h≤Ln |ρ̂n(h)|√

q lnn

p→∞.

This proves (A.37) by construction (11) of the penalty term Pn(Ln).

Step 2: Next we prove (A.38). First note that by (A.4) and (A.5) T̂n(Ln)/
√
n

p→ (0, 1) for

any {Ln}, Ln → [N
¯ 1,∞] and Ln/L̄n → [0, 1]. Hence T̂n(Ln)/

√
n/ ln(n)

p→ ∞ for any Ln → [N
¯ 1,∞],

where Ln = o(n/ ln(n)) by assumption. Monotonicity ensures T̂n(Ln) ≥ T̂n(l) for each l ≤ Ln, hence
T̂n(l)/T̂n(Ln) = [T̂n(l)/

√
n]/[T̂n(Ln)/

√
n]

p→ [0, 1] for such l. Indeed, if both (l,Ln) ≥ h∗n ≡ min{hn : hn

= argmax1≤h≤L̄n
|ρ̂n(h)|} then by construction T̂n(l)/T̂n(Ln) = 1.

Now suppose 1 ≤ l and l/Ln → [0, 1), and Ln/h∗n
p→ [0, 1), hence 1 ≤ l < Ln < h∗n as n → ∞ ap1.
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Then T̂n(l)/T̂n(Ln)
p→ [0, 1) by monotonicity and the construction of h∗n. Now use Ln ≤ L̄n = o(n/ ln(n))

and T̂n(Ln)/
√
n/ ln(n)

p→ ∞ to yield:

P
(
T̂n(Ln) ≥ T̂n(l) + 2

(√
Ln −

√
l
))

= P

(
T̂n(Ln)

(
1− T̂n(l)
T̂n(Ln)

)
≥ 2
√
Ln

(
1−

√
l

Ln

))
(A.39)

≥ P

(
T̂n(Ln)√
n/ ln(n)

(
1− T̂n(l)
T̂n(Ln)

)
≥ 2

√
Ln

n/ ln(n)

)
→ 1.

Next, consider 1 ≤ l and l/h∗n
p→ [0, 1), and Ln/h∗n

p→ [1,∞], hence 1 ≤ l ≤ h∗n − 1 ap1 and Ln ≥
h∗n ap1. Then P (T̂n(l) = T̂n(Ln) → 0 since by contruction h∗n is the smallest lag at which the maximum

correlation occurs. Monotonicity therefore yields T̂n(l)/T̂n(Ln)
p→ [0, 1), and again we deduce (A.39).

Now let (l,Ln) ≥ h∗n ap1. Then by construction T̂n(Ln) = T̂n(l) ap1. Trivially if l < Ln (l ≥ Ln)
then

√
Ln −

√
l > 0 (

√
Ln −

√
l ≤ 0). Hence P (T̂n(Ln) ≥ T̂n(l) + 2[

√
Ln −

√
l]) → 1 if and only if l ≥

Ln.
Next, let Ln < h∗n ≤ l ap1 such that T̂n(l) = T̂n(h∗n) ap1. Use Ln/l → [0, 1), l = o(n/ ln(n)),

T̂n(h∗n)/
√
n/ ln(n)

p→ ∞, and T̂n(Ln)/T̂n(h∗n)
p→ [0, 1) to yield:

P
(
T̂n(Ln) ≥ T̂n(l) + 2

(√
Ln −

√
l
))

= P

(
2

(
1−

√
Ln
l

)√
l

n/ ln(n)
≥ T̂n(h∗n)√

n/ ln(n)

(
1− T̂n(Ln)
T̂n(h∗n)

))
→ 0.

Finally, generally T̂n(l) = T̂n(Ln) a.s. for some {l,Ln} and all but a finite number of n is possible.

For example when l = Ln. In this case P (T̂n(Ln) ≥ T̂n(l) + 2(
√
Ln −

√
l)) = P (0 ≥ 2(

√
Ln −

√
l)) →

1 if and only if l ≥ Ln.
Combining the above results, we deduce P (T̂n(Ln) ≥ T̂n(l) + 2[

√
Ln −

√
l]) → 1 for every 1 ≤ l ≤

L̄n if and only if Ln ≥ h∗n, proving (A.38). QED.

References

Andrews, D. W. K. (1987): “Consistency in Nonlinear Econometric Models: A Generic Uniform Law
of Large Numbers,” Econometrica, 55, 1465–1471.

Andrews, D. W. K., and W. Ploberger (1996): “Testing for Serial Correlation against an
ARMA(1,1) Process,” Journal of the American Statistical Association, 91, 1331–1342.

Arcones, M. A., and B. Yu (1994): “Central Limit Theorems for Empirical and U-Processes of
Stationary Mixing Sequences,” Journal of Theoretical Probability, 7, 47–71.

Berman, S. M. (1964): “Limit Theorems for the Maximum Term in Stationary Sequences,” Annals of
Mathematical Statistics, 35, 502–516.

Billingsley, P. (1995): Probability and Measure. Wiley-Interscience, 3 edn.

Boehme, T. K., and M. Rosenfeld (1974): “An Example of Two Compact Hausdorff Fréchet Spaces
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Table 2: Median of Automatic Lags L∗n

et IID GARCH(1,1) MA(2) AR(1)

n {100, 250, 500, 1000} {100, 250, 500, 1000} {100, 250, 500, 1000} {100, 250, 500, 1000}

#1 {1, 1, 1, 1} {1, 1, 1, 1} {1, 1, 1, 1} {1, 1, 1, 1}

H0, h
∗ = 1 H0, h

∗ = 1 H1, h
∗ = 1 H1, h

∗ = 1

#2 {1, 1, 1, 1} {1, 2, 2, 2} {1, 1, 1, 1} {1, 1, 1, 1}

H0, h
∗ = 1 H1, ĥ

∗ = 4 H1, ĥ
∗ = 1 H1, ĥ

∗ = 1

#3 {1, 1, 1, 1} {1, 1, 1, 1} {1, 1, 1, 1} {1, 1, 2, 2}

H0, h
∗ = 1 H0, h

∗ = 1 H1, h
∗ = 1 H1, h

∗ = 1

#4 {2, 2, 2, 2} {2, 2, 2, 2} {1, 1, 2, 1} {1, 1, 1, 1}

H1, ĥ
∗ = 1 H1, ĥ

∗ = 1 H1, ĥ
∗ = 1 H1, ĥ

∗ = 1

#5 {1, 1, 1, 1} {1, 1, 2, 2} {1, 1, 1, 1} {1, 1, 1, 1}

H0, h
∗ = 1 H1, ĥ

∗ = 4 H1, ĥ
∗ = 1 H1, ĥ

∗ = 1

#6 {1, 1, 1, 1} {1, 1, 1, 1} {1, 1, 1, 1} {1, 1, 1, 1}

H0, h
∗ = 1 H0, h

∗ = 1 H1, h
∗ = 1 H1, h

∗ = 1

#7 {1, 1, 6, 6} - - -

H1, h
∗ = 6 - - -

#8 {1, 1, 12, 12} - - -

H1, h
∗ = 12 - - -

#9 {1, 1, 1, 24} - - -

H1, h
∗ = 24 - - -

#1: simple yt = et with a mean filter. #2: bilinear process with a mean filter. #3: AR(2) process with an AR(2) filter. #4:

AR(2) process with an AR(1) filter. #5: GARCH(1,1) process without a filter. #6: GARCH(1,1) process with a GARCH

filter. #7: Remote MA(6) process with a mean filter. #8: Remote MA(12) process with a mean filter. #9: Remote MA(24)

process with a mean filter. The error term et is IID, GARCH(1,1), MA(2), or AR(1) in Scenarios #1–#6, while it is IID

in Scenarios #7–#9. We report the median of automatic lags for actual test statistics, L∗
n, across J = 1000 Monte Carlo

samples. The largest possible lag length is L̄n = [1.5 × n/(lnn)4/3]. The tuning parameter that affects the penalty term

Pn(L) is q = 3.25. H0 implies the test variable {ϵt} is white noise, while H1 implies ϵt is serially correlated.

The smallest lag at which the largest correlation occurs, h∗, is recorded if it can be computed analytically.
Otherwise, we report a simulation based ĥ∗. We use J = 50, 000 Monte Carlo samples of size n = 50, 000,
and compute sample autocorrelations of {ϵt} at h = 1, . . . , 20. The smallest lag at which the largest
correlation occurs for the jth sample is ĥ∗j , and the reported ĥ∗ is the median of {ĥ∗1, . . . , ĥ∗J}.
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Table 3: Rejection Frequencies of Max-Correlation Test with Automatic Lag (Scenarios #1–#6)

IID Error: et = νt

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

n 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

100 .011, .058, .108 .009, .060, .107 .010, .067, .153 .060, .236, .339 .006, .039, .075 .024, .079, .130

250 .010, .050, .101 .013, .054, .100 .001, .045, .096 .192, .514, .655 .011, .032, .066 .016, .063, .115

500 .010, .050, .088 .008, .030, .068 .004, .038, .087 .566, .851, .909 .009, .040, .081 .006, .052, .082

1000 .008, .058, .103 .011, .041, .076 .009, .049, .099 .935, .990, .993 .010, .052, .093 .013, .054, .103

GARCH(1,1) Error: et = νtwt with w2
t = 1 + 0.2e2t−1 + 0.5w2

t−1

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

n 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

100 .005, .035, .078 .017, .026, .053 .012, .064, .138 .043, .155, .267 .000, .003, .008 .023, .084, .138

250 .005, .028, .066 .017, .035, .050 .004, .035, .096 .107, .342, .482 .001, .006, .010 .013, .055, .106

500 .006, .028, .073 .018, .026, .037 .003, .036, .088 .329, .620, .748 .001, .001, .005 .014, .058, .105

1000 .006, .042, .091 .013, .022, .026 .009, .042, .076 .747, .929, .967 .002, .002, .002 .015, .058, .106

MA(2) Error: et = νt + 0.5νt−1 + 0.25νt−2

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

n 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

100 .696, .911, .954 .566, .758, .839 .014, .076, .148 .241, .621, .780 .469, .692, .783 .901, .970, .984

250 .993, 1.00, 1.00 .851, .932, .966 .005, .052, .101 .698, .968, .991 .701, .830, .872 .990, .991, .992

500 1.00, 1.00, 1.00 .911, .960, .973 .020, .101, .165 .980, 1.00, 1.00 .838, .893, .912 1.00, 1.00, 1.00

1000 1.00, 1.00, 1.00 .983, .988, .992 .070, .166, .243 1.00, 1.00, 1.00 .879, .927, .949 1.00, 1.00, 1.00

AR(1) Error: et = 0.7et−1 + νt

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

n 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

100 .496, .756, .848 .507, .646, .697 .029, .132, .227 .299, .641, .786 .205, .338, .423 .988, .989, .990

250 .882, .976, .993 .686, .784, .829 .075, .272, .391 .780, .962, .994 .167, .267, .326 .999, .999, .999

500 .997, 1.00, 1.00 .731, .837, .884 .221, .517, .648 .995, 1.00, 1.00 .106, .175, .218 1.00, 1.00, 1.00

1000 1.00, 1.00, 1.00 .732, .822, .856 .616, .841, .913 1.00, 1.00, 1.00 .074, .123, .161 1.00, 1.00, 1.00

Scenario #1: Simple yt = et with a mean filter. Scenario #2: Bilinear yt = 0.5et−1yt−2 + et with a mean filter. Scenario

#3: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et with an AR(2) filter. Scenario #4: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et with an

AR(1) filter. Scenario #5: GARCH(1,1) yt = σtet, σ
2
t = 1+0.2y2t−1 +0.5σ2

t−1 without a filter. Scenario #6: GARCH(1,1)

yt = σtet, σ
2
t = 1 + 0.2y2t−1 + 0.5σ2

t−1 with a GARCH filter. For each scenario, νt
i.i.d.∼ N(0, 1). Actual and bootstrapped

test statistics are based on their own automatic lag lengths. The largest possible lag length is L̄n = [1.5 × n/(lnn)4/3],

and the tuning parameter that affects the penalty term Pn(L) is q = 3.25. We report rejection frequencies with respect to

nominal size α ∈ {0.01, 0.05, 0.10} across J = 1000 Monte Carlo samples. wo denotes without a filter, and w denotes with

a filter.
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Table 4: Rejection Frequencies of Cramér-von Mises Test CvMdw in Scenarios #1–#6

IID Error: et = νt

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

n 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

100 .023, .081, .138 .018, .076, .149 .020, .086, .167 .133, .338, .483 .021, .077, .141 .034, .087, .144

250 .016, .072, .144 .030, .085, .154 .011, .065, .127 .370, .615, .735 .011, .058, .118 .019, .065, .112

500 .010, .051, .102 .014, .072, .124 .012, .059, .132 .710, .882, .939 .009, .053, .103 .016, .072, .141

1000 .008, .060, .108 .016, .063, .106 .010, .049, .102 .974, .991, .993 .015, .058, .107 .013, .057, .103

GARCH(1,1) Error: et = νtwt with w2
t = 1 + 0.2e2t−1 + 0.5w2

t−1

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

n 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

100 .017, .081, .149 .002, .030, .070 .026, .086, .168 .118, .287, .430 .006, .049, .103 .036, .100, .168

250 .013, .059, .108 .029, .048, .083 .012, .058, .127 .242, .501, .648 .009, .037, .080 .020, .075, .132

500 .015, .066, .115 .026, .038, .075 .011, .051, .104 .550, .802, .881 .013, .052, .111 .026, .072, .143

1000 .010, .060, .116 .004, .014, .028 .008, .056, .105 .880, .973, .993 .006, .032, .065 .049, .065, .073

MA(2) Error: et = νt + 0.5νt−1 + 0.25νt−2

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

n 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

100 .898, .984, .995 .450, .743, .866 .029, .113, .182 .570, .805, .898 .681, .908, .969 .878, .927, .940

250 .999, 1.00, 1.00 .769, .924, .968 .019, .086, .189 .951, .996, .999 .903, .979, .994 .983, .989, .991

500 1.00, 1.00, 1.00 .884, .966, .990 .032, .144, .250 1.00, 1.00, 1.00 .959, .994, .995 .995, .998, .998

1000 1.00, 1.00, 1.00 .974, .994, .997 .068, .295, .471 1.00, 1.00, 1.00 .986, .997, 1.00 .998, .998, .998

AR(1) Error: et = 0.7et−1 + νt

#1. Simple #2. Bilin #3. AR2/AR2 #4. AR2/AR1 #5. GARCH/wo #6. GARCH/w

n 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

100 .925, .996, 1.00 .282, .567, .741 .064, .193, .299 .472, .741, .849 .564, .818, .923 .958, .970, .973

250 .999, 1.00, 1.00 .341, .572, .718 .136, .341, .465 .935, .991, .999 .680, .849, .912 .984, .987, .988

500 1.00, 1.00, 1.00 .393, .630, .781 .325, .592, .700 .999, 1.00, 1.00 .700, .852, .918 .999, 1.00, 1.00

1000 1.00, 1.00, 1.00 .474, .697, .810 .688, .876, .923 1.00, 1.00, 1.00 .750, .877, .929 .998, .999, .999

Scenario #1: Simple yt = et with a mean filter. Scenario #2: Bilinear yt = 0.5et−1yt−2 + et with a mean filter. Scenario

#3: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et with an AR(2) filter. Scenario #4: AR(2) yt = 0.3yt−1 − 0.15yt−2 + et with an

AR(1) filter. Scenario #5: GARCH(1,1) yt = σtet, σ
2
t = 1+0.2y2t−1 +0.5σ2

t−1 without a filter. Scenario #6: GARCH(1,1)

yt = σtet, σ2
t = 1 + 0.2y2t−1 + 0.5σ2

t−1 with a GARCH filter. For each scenario, νt
i.i.d.∼ N(0, 1). The dependent wild

bootstrap is used to compute an approximate p-value. All Ln = n − 1 lags are used by construction. We report rejection

frequencies with respect to nominal size α ∈ {0.01, 0.05, 0.10} across J = 1000 Monte Carlo samples. wo denotes without a

filter, and w denotes with a filter.
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Table 5: Rejection Frequencies in Scenarios #7–#9

Max-Correlation Test with Automatic Lag T̂ dw(L∗n)
#7. MA(6) #8. MA(12) #9. MA(24)

n L̄n 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 19 .014 .066 .127 .019 .077 .132 .020 .083 .144

250 38 .159 .261 .315 .029 .151 .249 .016 .068 .117

500 65 .685 .746 .759 .377 .652 .717 .020 .112 .193

1000 114 .998 .998 .999 .985 .993 .993 .615 .864 .920

Cramér-von Mises Test CvMdw

#7. MA(6) #8. MA(12) #9. MA(24)

n Ln 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 99 .040 .098 .171 .034 .110 .179 .029 .098 .186

250 249 .026 .080 .142 .025 .087 .155 .022 .088 .143

500 499 .014 .087 .175 .026 .092 .161 .024 .071 .133

1000 999 .038 .160 .320 .017 .083 .166 .028 .079 .144

Scenario #7: Remote MA(6) yt = et +0.25et−6 with a mean filter. Scenario #8: Remote MA(12) yt = et +0.25et−12 with

a mean filter. Scenario #9: Remote MA(24) yt = et + 0.25et−24 with a mean filter. For each scenario, et
i.i.d.∼ N(0, 1). For

each test, the dependent wild bootstrap is used to compute an approximate p-value. For the max-correlation test, actual

and bootstrapped test statistics are based on their own automatic lags with L̄n = [1.5 × n/(lnn)4/3] and q = 3.25. For

the Cramér-von Mises test, all Ln = n − 1 lags are used. We report rejection frequencies with respect to nominal size

α ∈ {0.01, 0.05, 0.10} across J = 1000 Monte Carlo samples.
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Figure 1: Empirical Size and Size-Adjusted Power of T̂ dw(L∗n) with α = 0.05
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We plot empirical size and size-adjusted power of the bootstrapped max-correlation test with automatic lag selection with

respect to nominal size 5%. In Case 1, the empirical size and empirical quantiles for size adjustment are computed under

Scenario #1 (iid yt and mean filter) with i.i.d. error; then the size-adjusted power is computed under Scenario #4 (AR(2)

yt and AR(1) filter) with i.i.d. error. In Case 2, the empirical size and empirical quantiles for size adjustment are computed

under Scenario #5 (GARCH yt and no filter) with i.i.d. error; then the size-adjusted power is computed under Scenario

#5 with MA(2) error. The tuning parameter that affects the penalty term Pn(L) is q ∈ {1.50, 1.75, . . . , 4.50}. The largest

possible lag length is L̄n = [1.5× n/(lnn)4/3], which implies that L̄100 = 19 and L̄500 = 65. We generate J = 1000 Monte

Carlo samples and M = 500 bootstrap samples.
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